QUICK

REFERENCE CARDS

FOR MONGODB 3.4

Updated July 2017

WHAT IS MONGODB?

IS AN OPEN-SOURCE,
GENERAL PURPOSE DATABASE.

Instead of storing data in rows and columns as a relational database does,
MongoDB uses a document data model, and stores a binary form of JSON
documents called BSON. Documents contain one or more fields, and each
field contains a value of a specific data type, including arrays and binary
data. Documents are stored in collections, and collections are stored in
databases. It may be helpful to think of documents as roughly equivalent
to rows in a relational database; fields as equivalent to columns; and
collections as tables. There are no fixed schemas in MongoDB, so
documents can vary in structure and can be adapted dynamically.

MongoDB provides full index support, including secondary, compound and
geospatial indexes. MongoDB also features a rich query language with
powerful analytics capabilities, atomic update modifiers, text search, and
MapReduce for complex in-place data analysis.

Built-in replication with automated failover provides high availability. Auto-
sharding enables horizontal scaling for large deployments. MongoDB also
provides native, idiomatic drivers for all popular programming languages
and frameworks to make development natural.

MongoDB is fully secure, with authentication, authorization & role-based
access control, integration with auth mechanisms like LDAP and Kerberos,

end-to-end encryption, auditing, and field-level redaction.

COMMAND HELPERS

COMMAND HELPERS

The following table lists some common help commands which are available in the

mongo shell:

help

db.help()

db.<collection>.help()

show dbs

use <db>

show collections

show users

show roles

show profile

show databases

(@® FOR MORE INFORMATION

Show help.

Show help for database methods.

Show help on collection methods.
The <collection> can be the
name of an existing collection or a
non-existing collection.

Print a list of all databases on the
server.

Switch current database to <db>.
The mongo shell variable db is set
to the current database.

Print a list of all collections for
the current database.

Print a list of users for the current
database.

Print a list of all roles, both
user-defined and built-in, for the
current database.

Print the five most recent
operations that took 1 millisecond
or more.

Print a list of all available
databases.

https://docs.mongodb.com/manual/reference/mongo-shell/

CRUD METHODS

CRUD METHODS

Queries typically take the following form:

db.<collection>.<method>(<filter>, <options>)

db refers to the current database. <collection> is the name of the target

collection for your query. For <method>, substitute the desired query method,

(examples below). Each method has its own <options> for what it will do with the

matching document(s).

db.collection.insertOne()

db.collection.insertMany()

db.collection.find()

db.collection.updateOne()
db.collection.updateMany()

db.collection.replaceOne()

db.collection.deleteOne()

db.collection.deleteMany()

(@® FOR MORE INFORMATION

Inserts a document into a
collection.

Inserts multiple documents into a
collection.

Selects documents in a collection
based on the filter and returns a
cursor to the selected documents.

Updates a single document within
the collection based on the filter.

Updates all documents within the
collection that match the filter.

Replaces a single document within
the collection based on the filter.

Removes a single document from a
collection based on the filter.

Removes all documents that match
the filter from a collection.

https://docs.mongodb.com/manual/crud/

QUERY FILTER PARAMETERS
AND WHAT THEY MATCH

QUERY FILTER PARAMETERS
AND WHAT THEY MATCH

MongoDB uses a key-value structure to create query filter parameters, which you
can use in the mongo shell or with a driver in a client application. For example, the
following query finds all documents in the collection named inventory in which the
gty field contains a value greater than 10:

db.inventory.find({ "gty" : { $gt: 10 }})

Queries take documents as query filter parameters, shown as examples below.
Multiple filter parameters can be included in one document, separated by commas.

Docs where a is 10 or an array

{a: 10} containing the value 10.

Docs where ais 10 and b is

{a: 10, b: "hello"} "hello".

Docs where a is greater than 10.
Also available:

{a: {fgt: 101} $1t (<), Sgte (>=), Slte (<=),
and $ne (I=).

Docs where a is either 10 or

{a: {$in: [10, "hello"]}} "hello".

Docs where a is an array
{a: {$all: [10, "hello"]}} containing both 10 and
"hello".

{"a.b": 10}

{a: {SelemMatch: {b: 1, c:
2}}}

{$or: [{a: 1}, {b: 2}]}

{a: /"m/}

{a: {$mod: [10, 1]}}

{a: {Stype: "string"}}

{$text: {$search: "hello"}}

@ FOR MORE INFORMATION

https://docs.mongodb.com/manual/re
https://docs.mongodb.com/manual/re

QUERIES

Docs where a is an embedded
document with b equal to 10.

Docs where a is an array that
contains an element with both b
equal to 1 and ¢ equal to 2.

Docs where ais 1 or b is 2.

Docs where a begins with the
letter m. One can also use the
regex operator: {a: {Sregex:

"Am"}}

Docs where a mod 10 is 1.

Docs where a is a string.

Docs that contain "hello" on a
full text search.

ference/bson-types

ference/operator/query/text/

{ a:
{ S$near:
{ Sgeometry:
{

Docs sorted in order of a nearest

. to farthest from the given
type: "Point",

coordinates:
[-73.9876, 40.7574

coordinates. There must be a
2dsphere index on a for this type
of query. Coordinates in GeoJSON
are listed in the order longitude,
latitude.

{ a:
{ $geoWithin:
{ Sgeometry:

{
type : "Polygon",
coordinates:
[[[0 0] Docs where a exists entirely
! ! within the specified GeoJSON
[3,61 Polygon.
[6 11,
[0, 0111
}

QUERIES

{ a:
{ $geolntersects:
{ S$geometry:
{

type: "Polygon",

Coordinates:
[[[0
[

[
[

]I
]I
]I
111

3,
6,
0

4

o = O ©

{ a:
{ $nearSphere:
{ S$geometry:
{
type : "Point",
Coordinates:
[-73.9876, 40.7574

b
SminDistance: 1000,
SmaxDistance: 5000

}

QUERIES

Docs where a intersects with
the specified GeoJSON Polygon,
including cases where a and the
polygon share an edge.

Docs where a is at least 1000
meters and at most 5000

meters from the specified

point, ordered from nearest to
farthest. $nearsphere requires a
geospatial index.

NOT INDEXABLE QUERIES

Queries that cannot use indexes will be executed as collection scans — scanning all

documents in the collection — which will perform poorly at scale. The following are

examples of query types which require a collection scan. To avoid collection scans,

these query forms should normally be accompanied by at least one other query term

which does use an index.

{a:

{a:

{a:

{a:

{a:

{$nin: [10, "hello"]}}

{$size: 3}}

{Sexists: true}}

/foo.*bar/}

{$not: {S$type: 2}}}

@ FOR MORE INFORMATION

Docs where a is anything but 10
or "hello".

Docs where a is an array with
exactly 3 elements.

Docs containing an a field.

Docs where a matches the regular

expression foo.*bar.

Docs where a is not a string.
$not negates any of the other
query operators.

http://docs.mongodb.org/manual/tutorial/query-documents/
http://docs.mongodb.org/manual/reference/operator/query/

FIELD UPDATE OPERATORS

FIELD UPDATE OPERATORS

{$inc: {a: 2}}

{$set: {a: 5}}

{Sunset: {a: 1}}

{$max: {a: 10}}

{$min: {a: -10}}

{$mul: {a: 2}}

{Srename: {a:

{$setOnInsert:
{upsert: true}

"b"})

{a:

Increment a by 2.

Set a to the value 5.

Delete the a key.

Set a to the greater value, either
current or 10. If a does not exist,
set a to 10.

Set a to the lowest value, either
current or =10. If a does not exist,
set a to -10.

Set a to the product of the current
value of a and 2. If a does not
exist set a to 0.

Rename field a to b.

Set field a to 1 in case of upsert
operation.

Set field a with the current date.

ScurrentDate can be specified
{$currentDate: {a: {$type:

" N as date or timestamp. Note that as
date"}}}

of 3.0, date and timestamp are not
equivalent for sort order.

Perform the bitwise and operation
over a field:

1000

0100

1100

Supports and | xor | or

{$bit: {a: {and: 7}}}

bitwise operators.

ARRAY UPDATE OPERATORS

{Spush: {a: 1}} Append the value 1 to the array a.

Append both 1 and 2 to the

{$push: {a: {Seach: [1, 2]}}} array a.

Append 10, 20, and 30 to the
array a, then trim the resulting
array to contain only the last 5
{Spush: {a: {Seach: [10, 20, elements. $slice can only be used
30], $slice: -5}}} with the $each modifier. Negative
values trim to the last <num>
elements, while positive values
trim to the first <num> elements.

FIELD UPDATE OPERATORS

Insert 50, 60, and 70 starting
{Spush: {a: {Seach: [50, 60, at position 0 of the array a.
70], S$position: 0}}} $position can only be used with
the $each modifier.

saddToSet 1 Append the value 1 to the array a
{sa G 2E (if the value doesn't already exist).

{$addToSet: {a: {Seach: [1, Append both 1 and 2 to the array
211} a (if they don't already exist).

Remove the last element from the

{$p0p: {a: l}} array a.

Remove the first element from the

{$pop= {a: _1}} array a.

Remove all values greater than &

{spull: {a: (Sgt: 5}} from the array a.

Spullall 5 6 Remove multiple occurrences of 5
{Spu ¢ {a: 5, 61} or 6 from the array a.

@ FOR MORE INFORMATION

http://docs.mongodb.org/manual/reference/operator/update/

FIELD UPDATE OPERATORS

AGGREGATION FRAMEWORK

AGGREGATION FRAMEWORK:

The aggregation pipeline, part of the MongoDB query language, is a framework for
data aggregation modeled on the concept of data processing pipelines. Documents
enter a multi-stage pipeline that transforms the documents into aggregated results.
Pipeline stages appear in an array. Documents pass through the stages in sequence.
Structure an aggregation pipeline using the following syntax:

db.<collection>.aggregate([{ <stagel> }, { <stage2> } ...]
)

COMMON AGGREGATION FRAMEWORK STAGES

Passes only
{$match: {a: 10}} documents where a Similar to find()
is 10.

Reshapes each

{$project: { a: 1, document to include Similar to find()
_id:0}} only field a, removing projection
others.

Reshapes each

. document to include
{Sproject: {

only _id and the new {a:1} => {new_a:1}
new_a: "$a" }} -

field new_a with the

value of a.

Reshapes each

document to include
{a:1, b:10} => {a:

11}

{$Sproject: { a:
{$add:["sa", "$b"]}}}

only _id and field a,
set to the sum of a
and b.

{$project: { stats:
{

value: "S$a",

fraction:
{$divide: ["$a",
ll$bll]}
}

P}

{$group: {
_id: "sa",
count:{$sum:1}

P}

{$group: { id: "sa",

names: {$addToSet:
"$b"}
3

{Sunwind: "S$a"}

{$limit: 10}

{$sort: {a:1}}

Reshapes each
document to contain
only _id and the new
field stats which
contains embedded
fields value, set to
the value of a, and
fraction, set to the
value of a divided by
b.

Groups documents by
field a and computes
the count of each
distinct a value.

Group documents by

field a with new field
names consisting of a
set of b values.

Deconstructs array
field a into individual
documents of each.

Limits the set of
documents to 10,
passing the first 10
documents.

Sorts results by field
a ascending.

AGGREGATION FRAMEWORK

{a: 10, b:2} => {
stats:{ value: 10,
fraction: b} }

{a:"hello"},
{a:"goodbye"},
{a:"hello"} => {_
id:"hello", count:2},
{_id:"goodbye",
count:1}

{a:1, b:"dohn"}, {a:1,
b:"Mary"} => {_id:1,
names:["John",
lIMary”]}

{a: [2,3,4]} => {a:2},
{a:3}, {a:4}

{$skip: 10}

{$sample: {size: 25}}

{$lookup: {

from: "inventory",

localField:
"item",

foreignField:
"sku",

as: "inventory
docs"

}}

{ $graphLookup:
{
from: "airports",
startWith:
"$nearestAirport",
connectFromField:
"connects",
connectToField:
"airport",
maxDepth: 2,
depthField: "num-
Connections",
as: "destina-
tions"
}
}

Skips the first 10
documents and passes
the rest.

Randomly selects 25
documents.

Performs an

equality match

from the sku field

in the inventory
collection to the item
field in the documents
passed into this stage,
then adds an array
inventory_docs to
each document with
matching documents
from inventory

For each document
passed into this
stage, looks up its
nearestAirport
value in the airports
collection and
recursively matches
the connects field
to the airport field
within the airports
collection. The
operation specifies
a maximum recursion
depth of 2. The array
destinations

is added to each
document with

the results of the
recursive match,
including the field
numConnections
with the value of the
depth of each match.

AGGREGATION FRAMEWORK

The sample size
value must be a
positive integer

This is a left outer
join.

The collection
specified in from
cannot be sharded,
and must be in the
same database.

The collection
specified in from
cannot be sharded,
and must be in the
same database.

{ Sbucket:
{
groupBy:
"Sprice",
boundaries: [0,
200, 400 1,
default:
"Other",
output:
{
"count":
{$sum: 1},
"titles" :
{Spush: "$title"}
}

{ SbucketAuto:
{
groupBy:
"Sprice",
buckets: 5

Categorizes incoming
documents into
groups, called
buckets, as defined
in boundaries.
Documents will be
grouped by price
into buckets 0-200
and 200-400, with
inclusive lower bound
and exclusive upper
bound. Documents
with a price outside
of those bounds will
be grouped into the
bucket other. The
output is a set of
documents, each with
_id set as the lower
bound of the bucket,
a count field with the
sum of documents,
and an array titles
of the title field of
incoming documents.

Categorizes incoming
documents into
buckets, grouping

by price into

5 buckets with
bucket boundaries
automatically
determined to attempt
to evenly distribute
documents.

AGGREGATION FRAMEWORK

Any input document
with a value
outside of specified
boundaries of or

a different BSON
type will cause

the operation to
throw an error.
This is avoided

by specifying a
default bucket.

The count field is

included by default

when the output is
not specified.

Optionally, provide
a granularity to
ensure that bucket
boundaries adhere
to a particular
number series. See
the documentation
for more details.

{$sortByCount:
Stags}

{$count: "a"}

{$indexStats: {} }

{ S$geoNear:
{ near:
{

type:
"Point",

coordinates:
[-73.9876, 40.7574
]

H
distanceField:
"dist"
}
}
{Sout: "myResults"}

Groups incoming
documents based on
the value of tags,
then computes the
count of documents in
each distinct group.

Counts the documents
input to this stage and
returns a document
with a field a with the
value of the count.

Returns statistics
regarding the use of
each index for the
collection.

Outputs documents

in order of nearest

to farthest from the
specified point, adding
the field dist with a
value of the distance
from the specified
point.

Writes resulting
documents of
the pipeline into
the collection
"myResults".

AGGREGATION FRAMEWORK

The expression can
not evaluate to an
object.

The $indexStats
stage takes an
empty document

Must be the
first stage of a
pipeline.

See documentation
for other options to
pass to $geoNear.

Must be the last
stage of the pipeline

FACETS
New in version 3.4, the Sfacet stage processes multiple aggregation pipelines
within a single stage on the same set of input documents. Each sub-pipeline has
its own field in the output document where its results are stored as an array of
documents. The $facet stage has the following form:

db.collection.aggregate([
{ S$facet:

{
<outputFieldl>: [{ <stagel> }, { <stage2> }, ... 1,

<outputField2>: [{ <stagel> }, { <stage2> }, ... 1,

1)

Facet-related aggregation stages (Sbucket, $bucketAuto, $sortByCount)
can be used in sub-pipelines for multi-faceted aggregations. All other aggregation
stages can also be used in sub-pipelines, with the following exceptions: $facet,
Sout, $geoNear, $indexStats, $collStats.

@ FOR MORE INFORMATION

https://docs.mongodb.com/manual/aggregation/

INDEXING

INDEXING

Index Creation Syntax

db.coll.createIndex(key pattern, options)
Creates an index on collection eoll with given key pattern and options.

INDEXING KEY PATTERNS

{a:1}

{a:1, b:-1}

{"a.b": 1}

{a: "text"}

{a: "2dsphere"}

{a: "hashed"}

INDEX OPTIONS:

{unique: true}

{background: true}

Simple index on field a, or a
multikey index on an array a; it is
not necessary to explicitly specify
the multikey type for arrays.

Compound index with a ascending
and b descending.

Ascending index on embedded
field "a.b".

Text index on field a. A collection
can have at most one text index.

Geospatial index where the a
field stores GeoJSON data. See
documentation for valid GeoJSON
formatting.

Hashed index on field a. Generally
used with hash-based sharding.

Create an index that requires all
values of the indexed field to be
unique.

Create this index in the
background; useful when you
need to minimize index creation
performance impact.

{name: "foo"}

{expireAfterSeconds:3600 }

{default language:
'portuguese'}

{partialFilterExpression:
'rating.grade': { S$gte: 60

}

EXAMPLES:

db.products.createIndex(
{'supplier':1},
{unique:true}

db.products.createIndex(
{'description': 'text',
{'default language':
'spanish'}

)

{
}

Specify a custom name for this
index. If not specified,

the name will be derived from the
key pattern.

Create a time to live (TTL) index
on the index key. This will force

the system to drop the document
after 3600 seconds expire. Only
works on keys of date type.

Use with text indexes to define
the default language used for stop
words and stemming.

Partial indexes only index the
documents in a collection that
meet a specified filter expression
— here, where rating.grade is
greater than 60. Partial indexes
will only be used by queries that
contain the filter expression or a
subset thereof.

Creates ascending index on
supplier assuring unique values.

Creates text index on
description key using
Spanish for stemming.

INDEXING

db.products.createIndex(
{style: 1, name: 1},
{partialFilterExpression:
{rating: { $gt: 5}}}

db.stores.createIndex(
{location: "2dsphere"}

ADMINISTRATION

db.products.getIndexes()

db.products.reIndex()

db.products.dropIndex({x: 1,
y: -1})

@ FOR MORE INFORMATION

Creates a compound index that
indexes only the documents
with a rating field greater

than 5. You can specify a
partialFilterExpression
option for all MongoDB index

types.

Creates a 2dsphere geospatial
index on location key.

Gets a list of all indexes on the
products collection.

Rebuilds all indexes on this
collection.

Drops the index with key

pattern {x: 1, y: -1}.

Use db.products.
dropIndex('index_a') to
drop index named index_a. Use
db.products.dropIndexes()
to drop all indexes on the
products collection.

https://docs.mongodb.com/manual/indexes/

INDEXING

DOCUMENT VALIDATION

WHAT IS DOCUMENT VALIDATION?

MongoDB provides the capability to validate documents during updates and inserts.
Validation rules are specified per collection using the validator option.

EXAMPLE

Add document validation to an existing collection using the col1lMod
command with the validator option or when creating a new collection using
db.createCollection():

db.createCollection("contacts",
{ validator: { Sor:
[
{ phone: { S$type: "string" } },
{ email: { $regex: /@mongodb\.com$/ } },
{ status: { $in: ["Unknown", "Incomplete"] } }

b
validationLevel: "moderate"
validationAction: "warn"

})

MongoDB also provides the validationLevel option, which determines how
strictly MongoDB applies validation rules to existing documents during an update,
and the validationAction option, which determines whether MongoDB should
error and reject documents that violate the validation rules or warn about the
violations in the log but allow invalid documents.

@ FOR MORE INFORMATION

https://docs.mongodb.com/manual/core/document-validation/

VIEWS

WHAT ARE VIEWS?

Views are often used in relational databases to achieve both data security and a
high level of abstraction, making it easier to retrieve data. Unlike regular tables,
MongoDB views neither have a physical schema nor use disk space.

MongoDB views execute a pre-specified query. To create a view, use the
db.createView('view_name','source’,[pipeline]) command, specifying
the view name, the view source collection, and an aggregation pipeline that defines
the view. This aggregation pipeline, as well as the other parameters, is saved in

the system.views collection. This is the only space that the view will use in the
system. A new document is saved in the system.views collection for each view
created.

@ FOR MORE INFORMATION

https://docs.mongodb.com/manual/core/views/

REPLICATION

REPLICATION

A replica set in MongoDB is a group of mongod processes that maintain the same
data set. Replica sets provide redundancy and high availability, and are the basis for
all production deployments. Replication of data is handled automatically, and in the
event of node failure or network partition, an automatic failover occurs.

SETUP:

Deploying a replica set for development or testing is a simple process. The example
setup below should not be used for production; for instance, this setup involves
only a single server, while a production environment should involve separate servers
in different physical locations for high availability. See the documentation for
production instructions.

The basic procedure is to start the mongod instances that will become members of
the replica set, configure the replica set itself, and then add the mongod instances
to it.

Before deploying a replica set, MongoDB must already be installed on each system
that will be part of the replica set. Ensure that your network configuration allows all
possible connections between each member.

EXAMPLE SETUP, 3-MEMBER REPLICA SET

1. Create data directories for each member with a command similar to the following.
mkdir -p /srv/mongodb/rs0-0 /srv/mongodb/rs0-1 /srv/mongodb/rs0-2

2. Start 3 mongod instances in their own shell windows with a command similar to
the following. These commands start each mongod as a member of a replica set
named rs0, each with a distinct port; if you are already using these ports, select
different ones.
1. mongod --port 27017 --dbpath /srv/mongodb/rs0-0 --replSet rsO
2. mongod --port 27018 --dbpath /srv/mongodb/rs0-1 --replSet rs0
3. mongod --port 27019 --dbpath /srv/mongodb/rs0-2 --replSet rsO

3. Connect to any mongod instance through the mongo shell. Here, we connect to
the first mongod created.
mongo --port 27017

4. While connected, use the command below to initiate a replica set. As written
below, default configuration will be used. See the documentation for how to
include a configuration document when initializing.

rs.initiate()

5. In the same mongo shell, add the two remaining mongod to the replica set
using the commands below.

rs.add("rs0-1:27018")

rs.add("rs0-2:27019")

6. The three-member replica is now running. At any time, use rs.conf() to check

the replica set configuration or rs.status() to check the status.

ADMINISTRATION:

rs.initiate() Create a new replica set with one

member.
rs.add("host:port") Add a member.
rs.addArb("host:port") Add an arbiter.
rs.remove("host:port") Remove a member.

Returns a document with
rs.status() information about the state of the
replica set.

REPLICATION

rs.conf()

rs.reconfig(newConfig)

rs.isMaster()

rs.stepDown(n)

rs.freeze(n)

rs.printSlave ReplicationInfo()

@ FOR MORE INFORMATION

Returns the replica set
configuration document.

Re-configures a replica set
by applying a new replica set
configuration object.

See which member is primary.

Force the primary to become a
secondary for n seconds, during
which time an election can take
place.

Prevent the current member from
seeking election as primary for n
seconds. n=0 means unfreeze.

Prints a report of the status of the
replica set from the perspective of
the secondaries.

https://docs.mongodb.com/manual/replication/

REPLICATION

SHARDING

WHAT IS SHARDING?

Sharding is a method for distributing data across multiple machines. MongoDB uses
sharding to support deployments with very large data sets and high throughput
operations.

Database systems with large data sets or high throughput applications can
challenge the capacity of a single server. For example, high query rates can exhaust
the CPU capacity of the server. Working set sizes larger than the system’s RAM
stress the 1/0 capacity of disk drives.

There are two methods for addressing system growth: vertical and horizontal
scaling.

VERTICAL SCALING

Vertical Scaling involves increasing the capacity of a single server, such as using

a more powerful CPU, adding more RAM, or increasing the amount of storage
space. Limitations in available technology may restrict a single machine from being
sufficiently powerful for a given workload. Additionally, Cloud-based providers have
hard ceilings based on available hardware configurations. As a result, there is a
practical maximum for vertical scaling.

HORIZONTAL SCALING

Horizontal Scaling involves dividing the system dataset and load over multiple
servers, adding additional servers to increase capacity as required. While the overall
speed or capacity of a single machine may not be high, each machine handles a
subset of the overall workload, potentially providing better efficiency than a single
high-speed high-capacity server. Expanding the capacity of the deployment only
requires adding additional servers as needed, which can be a lower overall cost
than high-end hardware for a single machine. The trade off is increased complexity
in infrastructure and maintenance for the deployment.

MongoDB supports horizontal scaling through sharding.

sh.enableSharding(Enable sharding on products
"products") database.

Shard collection catalog of
products database with shard
key consisting of the sku and
brand fields. This is an example
of range-based sharding. Range-
sh.shardCollection(based sharding involves dividing
" " data into contiguous ranges
products.catalog’, determined by gz‘he shardg/iey
{ sku:l, brand:1 } values. In this model, documents
) with "close" shard key values are
likely to be in the same chunk or
shard. This allows for efficient
queries where reads target
documents within a contiguous
range.

Shard collection catalog of
products database with shard
key consisting of a hash of the
_id field. This is an example of
hashed sharding. Use hashed

sh.shardCollection(sharding for collections that do
not naturally contain a key that

"products.collection”, . Y
: R R will ensure an even distribution
{ _id : "hashed” } of documents across shards.

) Hashing offers even distribution
of data at the likely expense of
more broadcast operations. Uses
a hashed index of a single field
as the shard key to partition data
across your sharded cluster.

SHARDING

Print a formatted report of the
h.stat sharding configuration and the
sh.status() information regarding existing

chunks in a sharded cluster

Adds existing replica set
REPLICA1 as a shard to the
cluster.

sh.addShard('REPLICA1l/
host:27017")

@ FOR MORE INFORMATION

https://docs.mongodb.com/manual/sharding/

SHARDING

=
>
U
U
e
Q)
2
O
I
=
O
=
O
Z
Q)
O
O
W

MAPPING SQL TO MONGODB

CONVERTING TO MONGODB TERMS

MYSQL EXECUTABLE ORACLE EXECUTABLE MONGODB EXECUTABLE
mysqld oracle mongod
mysql sqglplus mongo

SQL TERM MONGODB TERM

database (schema) database

table collection

index index

row document

column field

joining linking & embedding

partition shard

Queries and other operations in MongoDB are represented as documents passed

to find and other methods. Below are examples of SOL statements and the

analogous statements in MongoDB JavaScript shell syntax.

saL

CREATE TABLE people (

id MEDIUMINT NOT NULL
AUTO_INCREMENT, user_ id
Varchar(30), age Number,
status char(l), PRIMARY KEY
(id))

ALTER TABLE people ADD join

date DATETIME

ALTER TABLE people DROP
COLUMN join_ date

CREATE INDEX idx_user_id_asc
ON people(user_ id)

CREATE INDEX idx_ user id

asc_age_desc ON people(user_
id, age DESC)

DROP TABLE people

INSERT INTO people(user_
id, age, status) VALUES
("bcdo001", 45, "A")

SELECT * FROM people

MONGODB

db.people.insertOne({ user_id:
"abc123", age: 55, status: "A" })

db.people.updateMany({ }, { $set:

{join_date: new Date() } })

db.people.updateMany({}, {
$unset: { "join_date": "" } })

db.people.createlndex({ user_id:

)

db.people.createlndex({ user_id:
1, age: -1})

db.people.drop()

db.people.insertOne({ user_id:
"bcd001", age: 45, status: "A" })

db.people.find()

MAPPING SQL

SELECT id, user_ id, status
FROM people

SELECT user_id, status FROM
people

SELECT * FROM people WHERE
status = "A"

SELECT user_id, status FROM
people WHERE status = "A"

SELECT * FROM people WHERE
status != "A"'

SELECT * FROM people WHERE
status = "A" AND age = 50

SELECT * FROM people WHERE
status = "A" OR age = 50

SELECT * FROM people WHERE
age > 25

SELECT * FROM people WHERE
age < 25

SELECT * FROM people WHERE
age > 25 AND age <= 50

SELECT * FROM people WHERE
user id like "%bc%"

db.people.find({}, { user_id: 1,
status: 1 })

db.people.find({}, { user_id: 1,
status: 1, _id: 0})

db.people.find({ status: "A" })

db.people.find({ status: "A" }, {
user_id: 1, status: 1, id: 0})

db.people.find({ status: { $ne: "A"
)

db.people.find({ status: "A", age:
501)

db.people.find({ $or: [{ status
"A"},{age:50}11})

db.people.find({ age: { $gt: 25 }
})

db.people.find({ age: { $I1t: 256} })

db.people.find({ age: { $gt: 25,
$lte: 50} 1})

db.people.find({ user_id: /bc/ })

MAPPING SQL

SELECT * FROM people WHERE
user_id like "bc%"

SELECT * FROM people WHERE
status = "A" ORDER BY user_
id AscC

SELECT * FROM people WHERE
status = "A" ORDER BY user_
id DESC

SELECT COUNT(*) FROM people

SELECT COUNT(user_ id) FROM
people

SELECT COUNT(*) FROM people
WHERE age > 30

SELECT DISTINCT(status) FROM
people

SELECT * FROM people LIMIT 1

SELECT * FROM people LIMIT 5
SKIP 10

EXPLAIN SELECT * FROM people
WHERE status = "A"

UPDATE people SET status =
"C" WHERE age > 25

db.people.find({ user_id: { $regex:
/Nbe/ }})

db.people.find({ status: "A" }
).sort({ user_id: 11})

db.people.find({ status: "A" }
).sort({ user_id: -11})

db.people.count()

db.people.count({ user_id: {
$exists: true } })

db.people.count({ age: { $gt: 30
)

db.people.distinct("status")

db.people.findOne()

db.people.find().limit(5).skip(10)

db.people.find({ status: "A" }
).explain()

db.people.updateMany({ age: {
$gt: 25 1}, { $set: { status: "C" }
})

MAPPING SQL

UPDATE people SET age = age
+ 3 WHERE status = "A"

DELETE FROM people WHERE
status = "D"

DELETE FROM people

@ FOR MORE INFORMATION

db.people.updateMany({ status:
"A"}, { $inc: { age: 3} })

db.people.deleteMany({ status:
IIDH })

db.people.deleteMany({})

http://docs.mongodb.org/manual/reference/sql-comparison/

MAPPING SQL

RESOURCES

LEARN

Downloads - mongodb.com/download-center

Enterprise Advanced - mongodb.com/enterprise
MongoDB Manual - docs.mongodb.com

Free Online Education - university.mongodb.com
Presentations - mongodb.com/presentations

In-person Training - university.mongodb.com/training

SUPPORT

Stack Overflow - stackoverflow.com/questions/tagged/mongodb
Google Group - groups.google.com/group/mongodb-user

Bug Tracking - jira.mongodb.org

MongoDB Management Service - mms.mongodb.com

Commercial Support - mongodb.com/support

COMMUNITY
MongoDB User Groups (MUGs) - mongodb.com/user-groups
MongoDB Events - mongodb.com/events

SOCIAL

Twitter - @MongoDB

Facebook - facebook.com/mongodb

LinkedIn - linkedin.com/groups/MongoDB-2340731
CONTACT

Contact MongoDB - mongodb.com/contact

THE DATABASE AS A SERVICE

= FROM THE TEAM THAT BUILDS MONGODB =

o The best way to deploy, operate,
| mOHgODB@ AﬂaS and scale mongoDB in the cloud.

GET STARTED FOR FREE AT MONGODB.COM/ATLAS

