
HOpenGL – 3D Graphics with Haskell

A small Tutorial
(Draft)

Sven Eric Panitz
TFH Berlin

Version 24th September 2004

Publish early and publish often. That is the reason why you can read this. I
started playing around with HOpenGL the Haskell port of OpenGL a common
library for doing 3D graphics. I more or less took minutes of my efforts and
make them public in this tutorial. I did not have any prior experience in graphics
programming, when I started to work with HOpenGL.

The source of this paper is an XML-file. The sources are processed by an XQuery
processor, XSLT scripts and LATEX in order to produce the different formats of
the tutorial.

I’d like to thank Sven Panne1, the author of HOpenGL, who has been so kind
to comment on first drafts of this tutorial.

1Similar name different person.

Contents

1 Introduction 1-1

1.1 A Little Bit of Practice . 1-1

1.1.1 Opening Windows . 1-1

1.1.2 Drawing into Windows . 1-2

1.2 A Little Bit of Theory . 1-5

1.2.1 Haskell . 1-5

1.2.2 OpenGL . 1-5

1.2.3 Haskell and OpenGL . 1-5

1.3 A Little Bit of Technics . 1-6

1.4 A Little Bit of History . 1-6

2 Basics 2-1

2.1 Setting and Getting of Variables . 2-1

2.1.1 Setting values . 2-1

2.1.2 Getting values . 2-2

2.1.3 Getting and Setting Values . 2-3

2.1.4 What do the variables refer to . 2-4

2.2 Basic Drawing . 2-4

2.2.1 Display Functions . 2-4

2.2.2 Primitive Shapes . 2-6

2.2.3 Curves, Circles and so on . 2-16

2.2.4 Attributes of primitives . 2-20

2.2.5 Tessellation . 2-24

2.2.6 Cubes, Dodecahedrons and Teapots 2-26

1

CONTENTS 2

3 Modelling Transformations 3-1

3.1 Translate . 3-1

3.2 Rotate . 3-2

3.3 Scaling . 3-4

3.4 Composition of Transformations . 3-5

3.5 Defining your own transformation . 3-8

3.5.1 Shear . 3-9

3.6 Some Word of Warning . 3-10

3.7 Local transformations . 3-11

4 Projection 4-1

4.1 The Function Reshape . 4-1

4.2 Viewport: The Visible Part of Screen . 4-2

4.3 Orthographic Projection . 4-4

5 Changing States 5-1

5.1 Modelling your own State . 5-1

5.2 Handling of Events . 5-2

5.2.1 Keyboard events . 5-2

5.3 Changing State over Time . 5-4

5.3.1 Double buffering . 5-5

5.4 Pong: A first Game . 5-6

6 Third Dimension 6-1

6.1 Hidden Shapes . 6-1

6.2 Perspective Projection . 6-4

6.3 Setting up the Point of View . 6-7

6.3.1 Oribiting around the origin . 6-8

6.4 3D Game: Rubik’s Cube . 6-11

6.4.1 Cube Logics . 6-12

6.4.2 Rendering the Cube . 6-14

6.4.3 Rubik’s Cube . 6-16

6.5 Light . 6-17

6.5.1 Defining a light source . 6-19

6.5.2 Tux the Penguin . 6-20

Haskell Examples . 30

Chapter 1

Introduction

In this chapter some basic background information can be found. You you can read the
sections of this chapter in an arbitrary order. Whatever your personal preference is.

1.1 A Little Bit of Practice

Before you read a lot of technical details you will probably like to see something on your
screen. Therefore you find some very simple examples in the beginning. This will give you
a first impression, of how an OpenGL program might look like in Haskell.

1.1.1 Opening Windows

OpenGL’s main purpose is to render some graphics on a device. This device is generally a
window on your computer screen. Before you can draw something on a screen you will need
to open a window. So let’s have a look at the simpliest OpenGL program, which just opens
an empty window:

HelloWindow.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 createAWindow "Hello Window"
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= clear [ColorBuffer]

The first two lines import the necessary libraries. The main function does three things:

• initialize the OpenGL system

1-1

CHAPTER 1. INTRODUCTION 1-2

• define a window

• start the main procedure for dispaying everything and reacting on events

For the definition of a window with a given name we do two things:

• create some window with the given name

• define, what is to be done, when the window contents is to be displayed. In the simple
example above we simply clear the screen of any color by filling it with the default
background color.

This 10 lines can be compiled with ghc. Do not forget to specify the packages, which contain
the OpenGL library. It suffices to include the package GLUT, which automatically forces the
inclusion of the package OpenGL. GLUT is the graphical user interface, which comes along
with OpenGL, i.e. the window managing system etc.

sep@swe10:~/hopengl/examples> ghc -package GLUT -o HelloWindow HelloWindow.hs

sep@swe10:~/hopengl/examples> ./HelloWindow

When you start the program, a window will be opened on your desktop. As you may have
noticed, we did not specify any attribute of the window, like its size and position. GLUT is
defined in a way that initial default values are used for unspecified attributes.

1.1.2 Drawing into Windows

The simple program above did just open a window. The main purpose of OpenGL is to define
some graphics which is rendered in a window. Before starting to systematically explore the
OpenGL library let’s have a look at two examples that draw something into a window frame.

Some Points

First we will draw some tiny points on the screen. We use the same code for openening some
window:

SomePoints.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 (progName,_) <- getArgsAndInitialize
6 createAWindow progName
7 mainLoop

The only thing that has changed, is that we make use of one of the values returned by
getArgsAndInitialize: the name of the program.

For the window definition we use the code from HelloWindow.hs. But instead of clearing
the screen, when the window is to be displayed, we use an own display function:

CHAPTER 1. INTRODUCTION 1-3

SomePoints.hs
8 createAWindow windowName = do
9 createWindow windowName

10 displayCallback $= displayPoints

We want to draw some points on the screen. So let’s define some points. We can do this in
a list. Points in a three dimensional space are triples of coordinates. We can use floating
point numbers for coordinates in OpenGL.

SomePoints.hs
11 myPoints :: [(GLfloat,GLfloat,GLfloat)]
12 myPoints =
13 [(-0.25, 0.25, 0.0)
14 ,(0.75, 0.35, 0.0)
15 ,(0.75, -0.15, 0.0)
16 ,((-0.75), -0.25, 0.0)]

Eventually we need the display function, which displays these points.

SomePoints.hs
17 displayPoints = do
18 clear [ColorBuffer]
19 renderPrimitive Points
20 $mapM_ (\(x, y, z)->vertex$Vertex3 x y z) myPoints

As you see, when the window ist displayed, we want first everything to be cleared from the
window. Then we use the HOpenGL function renderPrimitive. The first argument Point
specifies what it is that we want to render; points in our case. For the second argument we
need to transform our coordinates into some data, which is used by HOpenGL. Do not yet
worry about this transformation.

As before, you will notice that again for quite a number of attributes we did not supply
explicit values. We did not specify the Color of the points to be drawn. Moreover we did
not define the coordinates of the graphics window. Looking at its result it is obviously a
two dimensional view, where the lower left corner seems to have coordinates (-1,-1) and the
upper right corner the (1,1). These values are default values chosen by the OpenGL library.

A Polygon

The points in the last section were rather boring? By changing a single word, we can span
an area with these points. Instead of saying render the following as points, we can tell
HOpenGL to render them as a polygon.

Example:
So here the program from above with one word changed. Points becomes
Polygon.

CHAPTER 1. INTRODUCTION 1-4

APolygon.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 (progName,_) <-getArgsAndInitialize
6 createAWindow progName
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= displayPoints
12

13 displayPoints = do
14 clear [ColorBuffer]
15 renderPrimitive Polygon
16 $mapM_ (\(x, y, z)->vertex$Vertex3 x y z) myPoints
17

18 myPoints :: [(GLfloat,GLfloat,GLfloat)]
19 myPoints =
20 [(-0.25, 0.25, 0.0)
21 ,(0.75, 0.35, 0.0)
22 ,(0.75, -0.15, 0.0)
23 ,((-0.75), -0.25, 0.0)]

The resulting window can be found in figure 1.1.

Figure 1.1: A simple polygon.

CHAPTER 1. INTRODUCTION 1-5

1.2 A Little Bit of Theory

1.2.1 Haskell

Haskell [?] is a lazily evaluated functional programming language. This means that there
are no mutable variables. A Haskell program consists of expressions, which do not have any
side effects. Expressions are only evalutated to some value when this is absolutely necessary
for program execution. This means it is hard to predict in which order subexpressions get
evaluated.

Expressions evaluate to some value without changing any state. This is a nice property of
Haskell, because it makes reasoning about programs easier and programs are very robust.

1.2.2 OpenGL

OpenGL on the other hand is a graphics library which is defined in terms of a state machine.
A mutable state modells the current state of the world. Functions are executed one after
another on this state in order to modify certain variables. E.g. one variable keeps the
current color to which all drawing statements refer. There is a statement which allows to
set the color variable to some other value.

A comprehensive introduction to OpenGL can be found in the so calledredbook[WBN+97].
OpenGL comes along with a utility library called GLU [CFH+98] and a system independent
GUI library called GLUT [Kil96].

1.2.3 Haskell and OpenGL

Having said this, Haskell and OpenGL seem to cooperate badly. There seems to be a great
mismatch between the fundamental concepts of the two. However, the designers of Haskell
discovered a very powerful structure, which is a perfect concept for modelling state changing
functions in a purely functional language: Monads[Wad90]. Most Haskell programmers do
not worry about the theory of monads but simply use them, whenever they do I/O, state
changing functions or in parser construction. With monads functional programs can almost
look like ordinary imperative progams [PJW93].

Monads are so essential to functional programming, that they have a special syntactic con-
struct in Haskell, the do notation.

Consider the following simple Haskell program, which uses monads:

Print.hs
1 main = do
2 let x = 5
3 print x
4 let x = 6
5 print x
6 xs <- getLine
7 print (length xs)

CHAPTER 1. INTRODUCTION 1-6

The monadic statements start with the keyword do. The statements have side effects.
Variables can be defined and redefined in let-expressions1. Monadic statements can have a
result. This can be retrieved from the statement by the <- notation.

On another aspect OpenGL and Haskell perfectly match. In OpenGL functions are assigned
to different data objects, e.g. a display function is passed to windows. Since functions are
first class citizens, they can easily and type safe be passed around2.

1.3 A Little Bit of Technics

If you want to start programming OpenGL in Haskell you need to be one of the brave,
who compile sources from the functional programming CVS repository in Glasgow. There
is not yet a precompiled version of the current HOpenGL library. Go to the website
(www.haskell.org/ghc) of the Glasgow Haskell Compiler (GHC), follow closely the instruc-
tions on the page CVS cheat sheet. When doing the ./configure step, then use the option
--enable-hopengl. i.e. start the command ./configure --enable-hopengl. This will
ensure that the Haskell OpenGL library will be build and the packages OpenGL and GLUT
are added to your GHC installation.

To compile Haskell OpenGL programs you simply have to add the package information to
he command line invocation of GHC, i.e. use:
ghc -package GLUT MyProgram.hs

Everything else, linking etc is done by GHC. You do not have to worry about library paths
or anything else.

1.4 A Little Bit of History

The Haskell port of OpenGL has been done by Sven Panne. Currently a stable version exists
and can be downloaded as precompiled binary. This tutorial deals with the completely
revised version of HopenGL, which has a more Haskell like API and needs less technical
overhead. This new version is not yet available as ready to use package. You need to
compile it yourself.

This tutorial has been written with no prior knowledge of OpenGL and no documentation
of HOpenGL at hand.

For the old version 1.04 of HOpenGL an online tutorial written by Andre W B Furtado
exists at (www.cin.ufpe.br/~haskell/hopengl/index.html) .

1Variables bound in let-expressions are not variables as known from imperative languages. Line 4 in the
example above does not assign a new value to a variable x but defines a new variable x.

2Unlike the object orientated languages Java, which misses an easy way to pass functions around.

Chapter 2

Basics

2.1 Setting and Getting of Variables

From what we have learnt in the introduction, we know that we are dealing with a state
machine and will write a sequence of monadic functions which effect this machine. Before we
start drawing fancy pictures let us explore the way values are set and retrieved in HOpenGL.

2.1.1 Setting values

The most basic operation is to assign values to variables in the state machine. In HOpenGL
this is done by means of the operator $=1 You do not need to understand, how this operator
is implemented. You simply can imagine that it is an assignment operator. The left operand
is a variable which gets assigned the right operand. We can revisit the first program, which
simply opened a window.

Example:
When we have created a window, we assign a size to it:

Set.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 myWindow "Hello Window"
7 mainLoop
8

9 myWindow name = do
10 createWindow name
11 windowSize $= Size 800 500
12 displayCallback $= clear [ColorBuffer]

1A nicer choice for this operator would have been :=, but this is not allowed for a function operator in
Haskell, but denotes an infix constructor.

2-1

CHAPTER 2. BASICS 2-2

One example of the assignment operator we have allready seen. In the last line we assign
a function to the variable displayCallback. This function will be executed, whenever the
window is displayed.

As you see, more you do not need to know about $=. But if you want to learn more about
it read the next section.

Implementation of set

The operator $= is defined in the module
Graphics.Rendering.OpenGL.GL.StateVar as a member function of a type class:

1 infixr 2 $=
2

3 class HasSetter s where
4 ($=) :: s a -> a -> IO ()

The variables of HOpenGL, which can be set are of type SettableStateVar e.g.:
windowTitle :: SettableStateVar String. Further variables that can be set for windows
are: windowStatus, windowTitle, iconTitle, pointerPosition,

2.1.2 Getting values

You might want to retrieve certain values from the state. This can be done with the function
get, which is in a way the corresponding function to the operator $=.

Example:
You can retrieve the size of the screen:

Get.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 x<-get screenSize
7 print x

When you compile and run this example the size of your screen it printed:

sep@swe10:~/hopengl/examples> ghc -package GLUT -o Get Get.hs

sep@swe10:~/hopengl/examples> ./Get

Size 1024 768

sep@swe10:~/hopengl/examples>

Implementation of get

There is a corresponding type class, which denotes that values can be retrieved from a
variable:

CHAPTER 2. BASICS 2-3

1 class HasGetter g where
2 get :: g a -> IO a

Variables which implement this class are of type GettableStateVar a.

2.1.3 Getting and Setting Values

For most variables you would want to do both: setting them and retrieving their values.
These variables implement both type classes and are usually of type: StateVar.

But things do not always work so simple as this sounds.

Example:
The following program sets the size of a window. Afterwards the variable
windowSize is retrieved:

SetGet.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 myWindow "Hello Window"
7 mainLoop
8

9 myWindow name = do
10 createWindow name
11 windowSize $= Size 800 500
12 x<-get windowSize
13 print x
14 displayCallback $= clear [ColorBuffer]

Running this program gives the somehow surprising result:

sep@swe10:~/hopengl/examples> ./SetGet

Size 300 300

The window we created, has the expected size of (800,500) but the variable
windowSize still has the default value (300,300).

The reason for this is, that setting the window size state variable has not a
direct effect. It just states a wish for a window size. Only in the execution of
the function mainLoop actual windows will be created by the window system.
Only then the window size will be taken into account. Up to that moment the
window size variable still has the default value. If you print the window size
state within some function which is executed in the main loop, then you will get
the actual size. By the way: you can try initialWindowSize without getting
such complecated surprising results.

CHAPTER 2. BASICS 2-4

2.1.4 What do the variables refer to

The state machine contains variables and stacks of objects, which are effectedly mutated
by calls to monadic functions. However not only the get and set statements modify the
state but also statements like createWindow. This makes it in the beginning a bit hard to
understand, when the state is changed in which way.

The createWindow statement not only constructs a window object, but keeps this new
window as the current window in the state. After the createWindow statement all window
effecting statements like setting the window size, are applied to this new window object.

2.2 Basic Drawing

2.2.1 Display Functions

There is a window specific variable which stores the function that is to be executed whenever
a window is to be displayed, the variable displayCallback. Since Haskell is a higher
order language, it is very natural to pass a function to the assignment operator. We can
define a function with some arbitrary name. The function can be assigned to the variable
displayCallback. In this function we can define a sequence of monadic statements.

Clearing the Screen

A first step we would like to do whenever the window needs to be drawn is to clear from it
whatever it contains2. HOpenGL provides the function clear, which does exactly this job.
It has one argument. It is a list of objects to be cleared. Generally you will clear the so
called color buffer, which contains the color displayed for every pixel on the screen.

Example:
The following simple program opens a window and clears its content pane when-
ever it is displayed:

Clear.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 (progName,_) <- getArgsAndInitialize
6 createAWindow progName
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= display
12

13 display = clear [ColorBuffer]

2Otherwise you might see arbitrary parts of other applications in your window frame.

CHAPTER 2. BASICS 2-5

First Color Operations

The window in the last section has a black background. This is because we did not specify
the color of the background and HOpenGL’s default value for the background color is black.
There is simply a variable for the background color.

For colors several data types are defined. An easy to use one is:

1 data Color4 a = Color4 a a a a
2 deriving (Eq, Ord, Show)

The four parameters of this constructor specify the red, green and blue values of the color
and additionally a fourth argument, which denotes the opaqueness of the color. The values
are usually specified by floating numbers of type GLfloat. Values for number attributes are
between 0 and 1.

You may wonder, why there is a special type GLfloat for numbers in HOpenGL. The
reason is that OpenGL is defined in a way that it is as independent from concrete types in
any implementation as possible. However you do not have to worry too much about this
type. You can use ordinary float literals for numbers of type GLfloat. Haskells overloading
mechanism ensures that these literals can create GLfloat numbers.

Example:
This program opens a window with a red background.

BackgroundColor.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 createAWindow "red"
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= display
12

13 display = do
14 clearColor $= Color4 1 0 0 1
15 clear [ColorBuffer]

Committing Complete Drawing

Whenever in a display function a sequence of monadic statements is defined, a final call to
the function flush should be made. Only such a call will ensure that the statements are
completely committed to the device, on which is drawn.

CHAPTER 2. BASICS 2-6

2.2.2 Primitive Shapes

So most preperatory things we know by now. We can start drawing onto the screen.
Astonishingly in OpenGL there is only very limited number of shapes for drawing. Just
points, simple lines and polygons. No curves or more complicated objects. Everything
needs to be performed with these primitive drawing functions. The main function used
for drawing something is renderPrimitive. The first argument of this functions specifies
what kind of primitive is to be drawn. There are the following primitives defined in OpenGL:

1 data PrimitiveMode =
2 Points
3 | Lines
4 | LineLoop
5 | LineStrip
6 | Triangles
7 | TriangleStrip
8 | TriangleFan
9 | Quads

10 | QuadStrip
11 | Polygon
12 deriving (Eq, Ord, Show)

The second argument defines the points which specify the primitives. These points are so
called vertexes. Vertexes are actually monadic functions which constitute a point. If you
want to define a point in a 3-dimensional universe with the coordinates x, y, z then you can
use the following expression in HOpenGL:

vertex (Vertex3 x y z)

or, if you prefer the use of the standard prelude operator $:

vertex$Vertex3 x y z

Points

We have seen in the introductory example that we can draw points. We can simply define
a vertex and use this in the function renderPrimitiv.

Example:
This program draws one single yellow point on a black screen.

SinglePoints.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 createAWindow "points"

CHAPTER 2. BASICS 2-7

7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= display
12

13 display = do
14 clear [ColorBuffer]
15 currentColor $= Color4 1 1 0 1
16 renderPrimitive Points
17 (vertex (Vertex3 (0.1::GLfloat) 0.5 0))
18 flush

If you do not like parantheses then you can of course use the operator $ from
the prelude and rewrite the line:
renderPrimitive Points$vertex$Vertex3 (0.1::GLfloat) 0.5 0

Unfortunately Haskell needs sometimes a little bit of help for overloaded type classes. There-
fore you find the type annotation (0.1::GLfloat) on one of the float literals. In larger
applications Haskell can usually infer this information from the context. Just in smaller
applications you will sometimes need to help Haskell’s type checker a bit.

The second argument of renderPrimitive is a sequence of monadic statements. So, if you
want more than one point to be drawn, you can define these in a nested do statement

Example:
In this program we use a nested do statement to define more points.

MorePoints.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 createAWindow "more points"
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= display
12

13 display = do
14 clear [ColorBuffer]
15 currentColor $= Color4 1 1 0 1
16 renderPrimitive Points $
17 do
18 vertex (Vertex3 (0.1::GLfloat) 0.6 0)
19 vertex (Vertex3 (0.1::GLfloat) 0.1 0)
20 flush

CHAPTER 2. BASICS 2-8

If you want to think of points mainly as triples then you can convert a list of points into a
sequence of monadic statements by first maping every triple into a vertex, e.g. by:
map (\(x,y,z)->vertex$Vertex3 x y z)
and then combining the sequence of monadic statements into one monadic statement. There-
fore you can use the standard function for monads: sequence_. The standard function mapM_
is simply the composition of map and sequence_, such that a list of triples can be converted
to a monadic vertex statement by:
mapM_ (\(x,y,z) -> vertex$Vertex3 x y z)
which is the technique used in the introductory example.

Example:
Thus we can rewrite a points example in the following way: points are defined
as a list of triples. Furthermore we define some useful auxilliary functions:

EvenMorePoints.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 main = do
5 getArgsAndInitialize
6 createAWindow "more points"
7 mainLoop
8

9 createAWindow windowName = do
10 createWindow windowName
11 displayCallback $= display
12

13 display = do
14 clear [ColorBuffer]
15 currentColor $= Color4 1 1 0 1
16 let points = [(0.1,0.6,0::GLfloat)
17 ,(0.2,0.8,0)
18 ,(0.3,0.1,0)
19 ,(0,0,0)
20 ,(0.4,-0.8,0)
21 ,(-0.2,-0.8,0)
22]
23 renderPoints points
24 flush
25

26 makeVertexes = mapM_ (\(x,y,z)->vertex$Vertex3 x y z)
27

28 renderPoints = renderAs Points
29

30 renderAs figure ps = renderPrimitive figure$makeVertexes ps

Some useful functions

In the following we want to explore all the other different shapes which can be rendered
by OpenGL. All shapes are defined in terms of vertexes which you can think of as points.

CHAPTER 2. BASICS 2-9

We have allready seen how to define vertexes and how to open a window and such things.
We provide a simple module, which will be used in the consecutive examples. Some useful
functions are defined in this module.

PointsForRendering.hs
1 module PointsForRendering where
2 import Graphics.UI.GLUT
3 import Graphics.Rendering.OpenGL

A first function will open a window und use a given display function for the window graphics:

PointsForRendering.hs
4 renderInWindow displayFunction = do
5 (progName,_) <- getArgsAndInitialize
6 createWindow progName
7 displayCallback $= displayFunction
8 mainLoop

The next function creates for a list of points, which are expressed as triples, and a basic
shape a display function which renders the desired shape.

PointsForRendering.hs
9 displayPoints points primitiveShape = do

10 renderAs primitiveShape points
11 flush
12

13 renderAs figure ps = renderPrimitive figure$makeVertexes ps
14

15 makeVertexes = mapM_ (\(x,y,z)->vertex$Vertex3 x y z)

Eventually we define a list of points as example and provide a function for easy use of these
points:

PointsForRendering.hs
16 mainFor primitiveShape
17 = renderInWindow (displayMyPoints primitiveShape)
18

19 displayMyPoints primitiveShape = do
20 clear [ColorBuffer]
21 currentColor $= Color4 1 1 0 1
22 displayPoints myPoints primitiveShape
23

24 myPoints
25 = [(0.2,-0.4,0::GLfloat)
26 ,(0.46,-0.26,0)
27 ,(0.6,0,0)
28 ,(0.6,0.2,0)
29 ,(0.46,0.46,0)
30 ,(0.2,0.6,0)
31 ,(0.0,0.6,0)

CHAPTER 2. BASICS 2-10

32 ,(-0.26,0.46,0)
33 ,(-0.4,0.2,0)
34 ,(-0.4,0,0)
35 ,(-0.26,-0.26,0)
36 ,(0,-0.4,0)
37]

Example:
We can now render the example points in a oneliner:

RenderPoints.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor Points

Lines

The next basic thing to do with vertexes is to connect them, i.e. consider them as starting
and end point of a line. There are three ways to connect points with lines in OpenGL.

Singleton Lines The most natural way is to take pairs of points and draw lines between
these. This is done in the primitive mode Lines. In order that this works properly an even
number of vertexes needs to be supplied to the function renderPrimitive.

Example:
Connecting our example points by lines. Pairs of points define singleton lines.

RenderLines.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor Lines

The resulting window can be found in figure 2.1.

Line Loops The next way to connect points with lines you probably can imagine is to
make a closed figure. The end point of a line is the starting point of the next line and the
last point is connected with the first, such that a closed loop of lines is created.

Example:
Now we make a loop of lines with our example points.

RenderLineLoop.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor LineLoop

The resulting window can be found in figure 2.2.

CHAPTER 2. BASICS 2-11

Figure 2.1: Lines between points.

Figure 2.2: A loop of lines.

Line Strip A strip of lines is very close to a loop of lines. The only thing missing is the
last line which connects the last point with the first one again.

Example:
Now we make a strip of lines with our example points.

RenderLineStrip.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor LineStrip

CHAPTER 2. BASICS 2-12

The resulting window can be found in figure 2.3.

Figure 2.3: A strip in terms of lines.

Triangles

The next basic shape which can be rendered by OpenGL are triangles. Triples of points are
taken and triangles are drawn with these. As for lines there are three flavours of triangles.

Triangle The most natural way of drawing triangles is to take triples and draw triangles.
In order to work for triangles, the number of points provided needs to be a multiple of 3.

Example:
Our example vertexes define 12 points such that we get 4 triangles

RenderTriangles.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor Triangles

The resulting window can be found in figure 2.4.

Triangle Strips A triangle strip makes a sequence of triangles where the next triangle
uses two points of its predecessor and one new point.

Example:
For our 12 points a triangle strip will create 10 triangles.

CHAPTER 2. BASICS 2-13

Figure 2.4: Triangles.

RenderTriangleStrip.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor TriangleStrip

The resulting window can be found in figure 2.5.

Figure 2.5: A triangle strip.

CHAPTER 2. BASICS 2-14

TriangleFan A fan has one starting point for all triangles. Triangles are always drawn
starting from the first point.

Example:
Our example points as a fan. 10 triangles are rendered.

RenderTriangleFan.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor TriangleFan

The resulting window can be found in figure 2.6.

Figure 2.6: A triangle strip.

Quads

Lines connected two points, triangles three points, now we will connect four points. This is
calles a quad. There are two flavours of quads.

Singleton Quads The primitive mode Quads takes quadruples of points and connects
them in order to render a filled figure.

Example:
For our 12 example points OpenGL renders 3 quads

RenderQuads.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor Quads

CHAPTER 2. BASICS 2-15

Figure 2.7: Quads.

The resulting window can be found in figure 2.7.

In a three dimensional world quads are unlike triangles not necessarily plane areas.

QuadStrips For a strip of quads OpenGL uses two points of the preceeding quads for the
next quad. The number n of vertexes therefore needs to be of the form: n = 4 + 2 ∗ m.

Example:
Our examples vertexes now used for a strip of quads.

RenderQuadStrip.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor QuadStrip

The resulting window can be found in figure 2.8.3

Polygons

We connected two, three and for points. Eventually there is a shape that connects an
arbitrary number of points. This is generally called a polygon. There are some restrictions
for polygons:

• no convex corners are allowed.

• lines may not cross each other.
3Which somehow does not look like the expected?

CHAPTER 2. BASICS 2-16

Figure 2.8: QuadStrips.

• polygons need to be planar.

Example:
Eventually our vertexes are used to define a polygon.

RenderPolygon.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 main = mainFor Polygon

In this case the resulting window looks like the triangle fan we have seen before.

If you want to render polygons which hurt some of the restrictions above, you need to
represent them by a set of smaller polygons. Since this is a tedious task to be done manually
there is a library available, which does this for you: the GLU tessellation.

2.2.3 Curves, Circles and so on

In the last sections you have seen all primitive shapes, which can be rendered by OpenGL.
Everything else needs to be constructed in term of these primitives. Especially you might
wonder where curves and circles are. The bad news is: you have to do these by yourself.

Circles

With a bit mathematics you probably have allready guessed how to do curves and especially
circles. You need to approximate them with a large number of lines. If the lines get very
small we eventually see a curve. Let us try this with circles. We write a module which gives
us some utility functions for rendering circles.

CHAPTER 2. BASICS 2-17

Circle.hs
1 module Circle where
2 import PointsForRendering
3 import Graphics.Rendering.OpenGL

The crucial function calculates a list of points which are all on the circle. You need a bit
of basic geometrical knowledge for this. The coordinates of the points on a circle can be
determined by sin(α) and cos(α) where α is between 0 and 2π.

Thus we can easily calculate the coordinates of an arbitrary number of points on a circle:

Circle.hs
4 circlePoints radius number
5 = [let alpha = twoPi * i /number
6 in (radius*(sin (alpha)) ,radius * (cos (alpha)),0)
7 |i <- [1,2..number]]
8 where
9 twoPi = 2*pi

If we take a large anough number then we will eventually get a circle:

Circle.hs
10 circle radius = circlePoints radius 100

The following function can be used to render the circle figures:

Circle.hs
11 renderCircleApprox r n
12 = displayPoints (circlePoints r n) LineLoop
13

14 renderCircle r = displayPoints (circle r) LineLoop
15 fillCircle r = displayPoints (circle r) Polygon

Example:
First we test what kind of shape we get for small approximation numbers.

ApproxCircle.hs
1 import PointsForRendering
2 import Circle
3

4 import Graphics.Rendering.OpenGL
5

6 main = renderInWindow $ do
7 clear [ColorBuffer]
8 renderCircleApprox 0.8 10

The resulting graphic can be seen in figure 2.9.

Example:
Now we can test, if the resulting circle is, what we expected.

CHAPTER 2. BASICS 2-18

Figure 2.9: 10 points on a circle.

TestCircle.hs
1 import PointsForRendering
2 import Circle
3

4 import Graphics.Rendering.OpenGL
5

6 main = renderInWindow $ do
7 clear [ColorBuffer]
8 renderCircle 0.8

The resulting graphic can be seen in figure 2.10.

Example:
And eventually have a look at the filled circle.

FillCircle.hs
1 import PointsForRendering
2 import Circle
3

4 import Graphics.Rendering.OpenGL
5

6 main
7 = renderInWindow $ do
8 clear [ColorBuffer]
9 fillCircle 0.8

The resulting graphic can be seen in figure 2.11.

CHAPTER 2. BASICS 2-19

Figure 2.10: Rendering a full circle.

Figure 2.11: A filled circle.

Rings

Now, where you know how to do circles, you can equally as easy define functions for rendering
rings. A ring has an inner and an outer circle and fills the space between these. So we can
approximate these two rings and render quads between them.

Ring.hs
1 module Ring where
2

3 import PointsForRendering
4 import Circle

CHAPTER 2. BASICS 2-20

5 import Graphics.Rendering.OpenGL

We can simply define the points of the inner and outer ring and merge these. The resulting
list of points can then be rendered as a QuadStrip. Since there is no primitive mode for
quad loops, we need to append the first two points as the last points again:

Ring.hs
6 ringPoints innerRadius outerRadius
7 = concat$map (\(x,y)->[x,y]) (points++[p])
8 where
9 innerPoints = circle innerRadius

10 outerPoints = circle outerRadius
11 points@(p:_) = zip innerPoints outerPoints

Eventually we provide a small function for rendering ring shapes.

Ring.hs
12 ring innerRadius outerRadius
13 = displayPoints (ringPoints innerRadius outerRadius) QuadStrip

Example:
We can test the ring functions:

TestRing.hs
1 import PointsForRendering
2 import Ring
3

4 import Graphics.Rendering.OpenGL
5

6 main = renderInWindow $ do
7 clear [ColorBuffer]
8 ring 0.7 0.9

The resulting graphic can be seen in figure 2.12.

2.2.4 Attributes of primitives

There are some more attributes that can be set for primitive shapes (besides the color, which
we have allready set).

Point Size

You could argue that there is no need for single points. A point can be modelled by a circle
that has a small radius (or in the third dimension a sphere). However, there is something
like a point in OpenGL and you can set its size. This size value for points does not refer
to a radius in the coordinate system but is measured in terms of screen pixels. The default
value is, one pixel per point.

CHAPTER 2. BASICS 2-21

Figure 2.12: A simple ring shape.

Example:
We set the point size to 10 pixels:

PointSize.hs
1 import Graphics.Rendering.OpenGL
2 import PointsForRendering
3

4 main = renderInWindow display
5

6 display = do
7 pointSize $= 10
8 displayMyPoints Points

The resulting graphic can be seen in figure 2.13.

Line Attributes

As for points, there are also further attributes for lines. First of all there is a line width.
As for the point size, this is measured in screen pixels. Furthermore, you can set some line
stipple: this is the pattern of the line, dashes etc. For the line stipple there is a state variable
of type: Maybe (GLint, GLushort). The second argument of the value pair denotes the
kind of stipple. For every short value there is one stipple. The short value has 16 bits.
Every bit stands for a pixel. If for the corresponding short number the bit is set, then the
pixel will be drawn, otherwise not. This means that for the short number 0 you will not see
anything of your line, and for the value 65535 you will see a solid line.

The integer number of the value pair denotes a factor for the chosen stipple. For some
positiv integer n every bit of the short number stands for n bits.

Example:
Setting the width of lines and a stipple:

CHAPTER 2. BASICS 2-22

Figure 2.13: Points of a large size.

LineAttributes.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3 import PointsForRendering
4

5 main = renderInWindow display
6

7 display = do
8 clearColor $= Color4 1 1 1 1
9 clear [ColorBuffer]

10 lineStipple $= Just (1,255)
11 currentColor $= Color4 0 0 0 1
12 lineWidth $= 10
13 displayPoints squarePoints LineLoop
14 flush
15

16 squarePoints
17 = [(-0.7,-0.7,0),(0.7,-0.7,0),(0.7,0.7,0),(-0.7,0.7,0)]

The resulting graphic can be seen in figure 2.14.

Colors

You might have wondered, why the function renderPrimitive takes monadic statements as
argument and not simply a list of vertexes? This means we could pass any monadic statement
to the function renderPrimitive, not only statements that define vertexes by the call of the
function vertex. There are some statements, which are allowed in the statements passed
to renderPrimitive. One of these is setting the current color before every call of vertex

CHAPTER 2. BASICS 2-23

Figure 2.14: Thick stippled lines.

to a new value. When finally rendering the primitive, OpenGL takes these color values into
acount.

Example:
We define a triangle. Before the three vertexes of the triangle are defined, the
current color is set to a new value.

PolyColor.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3 import PointsForRendering
4

5 colorTriangle = do
6 currentColor $= Color4 1 0 0 1
7 vertex$Vertex3 (-0.5) (-0.5) (0::GLfloat)
8 currentColor $= Color4 0 1 0 1
9 vertex$Vertex3 (0.5) (-0.5) (0::GLfloat)

10 currentColor $= Color4 0 0 1 1
11 vertex$Vertex3 (-0.5) (0.5) (0::GLfloat)
12

13 main = renderInWindow display
14

15 display = do
16 clearColor $= Color4 1 1 1 1
17 clear [ColorBuffer]
18 renderPrimitive Triangles colorTriangle
19 flush

The resulting window can be found in figure 2.15.

CHAPTER 2. BASICS 2-24

Figure 2.15: A triangle with different vertex colors

2.2.5 Tessellation

Rendering of polygons is very limited. We cannot render polygons for crossing lines, or
convex corners. Such polygons need to be expressed by a set of simpler polygons. In the
module Graphics.Rendering.OpenGL.GLU.Tessellation there are a number of functions,
which calculate a set of simpler polygons. For the time being, we will not go into detail, but
give one single example, of how to use this library.

Example:
We want to render stars. These are shapes with convex corners.

Star.hs
1 module Star where
2 import Graphics.Rendering.OpenGL
3 import Graphics.UI.GLUT as GLUT
4 import Data.Either
5 import Circle
6 import List

We can easily calculate the points on the star rays. They are all on one circle.
We can use our function for defining circle points and get a list of points. For
rendering the star, we take first the points with odd index followed by the points
with even index.

Star.hs
7 starPoints radius rays
8 = map (\(_,(x,y,z))->Vertex3 x y z)(os++es)
9 where

10 (os,es) = partition (\(i,_)-> odd i)
11 $zip [1,2..]
12 $circlePoints radius rays

CHAPTER 2. BASICS 2-25

For tesselation we need to create a ComplexPolygon, which has a list of
ComplexContour. A ComplexContour contains a list of AnnotatedVertexes.
The annotation can be used for color or similar information. We do not make
use of this annotation and simple annotate every vertex with 0.

Star.hs
13 complexPolygon points
14 = ComplexPolygon
15 [ComplexContour $map (\v->AnnotatedVertex v 0) points]

The function tesselate creates a list of simple polygons. It needs some control
information, which we do not explain here.

Star.hs
16 star radius rays= do
17 startess
18 <- tessellate
19 TessWindingPositive 0 (Normal3 0 0 0) noOpCombiner
20 $complexPolygon (starPoints radius rays)
21 drawSimplePolygon startess

The resulting simple polygons can be rendered with the function
renderPrimitive.

Star.hs
22 drawSimplePolygon (SimplePolygon primitiveParts) =
23 mapM_ renderPrimitiveParts primitiveParts
24

25 renderPrimitiveParts (Primitive primitiveMode vertices) =
26 renderPrimitive primitiveMode
27 $mapM_ (vertex . stripAnnotation) vertices
28

29 stripAnnotation (AnnotatedVertex plainVertex _) = plainVertex
30

31 noOpCombiner _newVertex _weightedProperties = 0.0 ::GLfloat

Now we can test our stars. We render two stars, one with 7 and one with 5 rays.
RenderStar.hs

1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3 import Graphics.UI.GLUT as GLUT
4 import Star
5

6 main = renderInWindow$do
7 clearColor $= Color4 1 1 1 1
8 clear [ColorBuffer]
9

10 currentColor $= Color4 1 0 0 1
11 star 0.9 7
12

13 currentColor $= Color4 1 1 0 1
14 star 0.4 5

CHAPTER 2. BASICS 2-26

The resulting window can be found in figure 2.16.

Figure 2.16: RenderStar

2.2.6 Cubes, Dodecahedrons and Teapots

The bad news was that just very basic shapes are provided by OpenGL for rendering. The
good news is that the OpenGL library comes along with a library that contains a large
number of shapes.

Example:
You probably need very often the shape of a teapot. Since this is so elementary
a library function is provided for this.

Tea.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5

6 main = renderInWindow display
7

8 display = do
9 clear [ColorBuffer]

10 renderObject Solid$ Teapot 0.6
11 flush

The resulting graphic can be seen in figure 2.17.

CHAPTER 2. BASICS 2-27

Figure 2.17: A tea pot.

Chapter 3

Modelling Transformations

By now you know, how to define different shapes for rendering. You might wonder how to
place shapes on special positions or how to scale or rotate your shapes. This is done by so
called transformation matrixes. Before something is rendered by OpenGL a transformation
operation is performed on it. Every point will get multiplied with the transformation matrix.
The transformation matrix is part of the state. So in order to transform a shape in some
way, first the transformation matrix has to be set and then the shapes are to be rendered.
If not specified otherwise the transformation matrix is the identity operation, i.e. no
transformation is performed. You can always reset the transformation matrix to the identity
by the call of the monadic statement loadIdentity. Then the current matrix is discarded
and no transformation is applied to the next rendering operations.

3.1 Translate

One transformation is to move a shape to another position. The according matrix is set
by the statement translate. It has one argument: a vector of size three which denotes in
which direction the following shapes are to be moved. Every vertex that will be rendered
after a translate statement will be moved by the values of this vector.

Example:
The function ring we defined before only defined rings which have the center
coordinates (0, 0, 0). If we want to place rings somewhere else then we need to
apply a translate matrix.

SomeRings.hs
12 import PointsForRendering
13 import Ring
14 import Graphics.Rendering.OpenGL

We define a function, which creates a ring at a given position. Therefore we first
set the transformation to the translate transformation then define the ring and
finally set the transformation matrix back to the identity:

3-1

CHAPTER 3. MODELLING TRANSFORMATIONS 3-2

SomeRings.hs
15 ringAt x y innerRadius outerRadius = do
16 translate$Vector3 x y (0::GLfloat)
17 ring innerRadius outerRadius

We can test this by placing some ring in different colors on the screen.
SomeRings.hs

18 main = do
19 renderInWindow someRings
20

21 someRings = do
22 clearColor $= Color4 1 1 1 1
23 clear [ColorBuffer]
24

25 loadIdentity
26 currentColor $= Color4 1 0 0 1
27 ringAt 0.5 0.3 0.1 0.12
28

29 loadIdentity
30 currentColor $= Color4 0 1 0 1
31 ringAt (-0.5) 0.3 0.3 0.5
32

33 loadIdentity
34 currentColor $= Color4 0 0 1 1
35 ringAt (-1) (-1) 0.7 0.75
36

37 loadIdentity
38 currentColor $= Color4 0 1 1 1
39 ringAt 0.7 0.7 0.2 0.3

The resulting graphic can be seen in figure 3.1.

Note that if we did not reset the transformation back to the identity, we would
get the composition of all transformations.

3.2 Rotate

Another transformation that can be performed is rotation. The rotate statement has two
arguments. The first one specifies by which degree the following shapes are to be rotated
counterclockwise. The second argument is a vector which specifies around which axis the
shape is to be rotated.

Example:
In this example we apply the composition of two transformations. Squares are
moved to some position and furthermore rotated around the z-axis.

We write a simple module for rendering filled rectangles:

CHAPTER 3. MODELLING TRANSFORMATIONS 3-3

Figure 3.1: Rings translated to different positions.

Squares.hs
1 module Squares where
2

3 import Graphics.Rendering.OpenGL
4 import PointsForRendering

Here is a function for arbitrary rectangles:
Squares.hs

5

6 myRect width height =
7 displayPoints [(w,h,0),(w,-h,0),(-w,-h,0),(-w,h,0)] Quads
8 where
9 w = width/2

10 h = height/2

A square is just a special case:
Squares.hs

11 square width = myRect width width

Now we will transform squares.
SomeSquares.hs

1 import PointsForRendering
2 import Squares
3 import Graphics.Rendering.OpenGL

We define a function, which applies the rotate transformation to a square. It is
rotated around the z-axis.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-4

SomeSquares.hs
4 rotatedSquare alpha width = do
5 rotate alpha $Vector3 0 0 (1::GLfloat)
6 square width

A further utility function moves some shape to a specified position. Note that
this function resets the matrix again.

SomeSquares.hs
7 displayAt x y displayMe = do
8 translate$Vector3 x y (0::GLfloat)
9 displayMe

10 loadIdentity

Some squares are defined and rotated:
SomeSquares.hs

11 main = do
12 renderInWindow someSquares
13

14 someSquares = do
15 clearColor $= Color4 1 1 1 1
16 clear [ColorBuffer]
17

18 currentColor $= Color4 1 0 0 1
19 displayAt 0.5 0.3$rotatedSquare 15 0.12
20

21 currentColor $= Color4 0 1 0 1
22 displayAt (-0.5) 0.3$rotatedSquare 25 0.5
23

24 currentColor $= Color4 0 0 1 1
25 displayAt (-1) (-1)$rotatedSquare 4 0.75
26

27 currentColor $= Color4 0 1 1 1
28 displayAt 0.7 0.7$rotatedSquare 40 0.3

The resulting graphic can be seen in figure 3.2.

3.3 Scaling

The third transformation enables you to scale shapes. This is not only useful for changing
the size of some object but for stretching it in some direction. The transformation scale
has three arguments, which represent the scaling factors in the three dimensional space.

Example:
We apply three transformations on the tea pot example. We rotate and translate
it and finally we stretch it a bit by a scale transformation.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-5

Figure 3.2: Squares translated and rotated.

Coffee.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5 main = renderInWindow display
6

7 display = do
8 clear [ColorBuffer]
9 scale 0.3 0.9 (0.3::GLfloat)

10 translate$Vector3 (-0.3) 0.3 (0::GLfloat)
11 rotate 30 $Vector3 0 1 (0::GLfloat)
12 renderObject Solid$ Teapot 0.6
13 loadIdentity
14 flush

The resulting graphic can be seen in figure 3.3. As you see it looks now like a
coffee pot.

Remember that the scale and the rotate transformation always refer to the origin (0,0,0)
of your coordinates. Rotating an object, which is not situated at the origin will move it
around the origin. Scaling an object which is not situated at the origin might deform the
object in surprising ways.

3.4 Composition of Transformations

Since Haskell is a functional programming language let us think of transformations as func-
tions. A transformation is a function that is applied to every vertex before it is rendered.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-6

Figure 3.3: A coffee pot.

If you define two transformations for an object, e.g. a rotation and a translation, then you
define a composition of these transformations.

The code:

1 rotatedSquareAt width alpha x y z = do
2 translate$Vector3 x w y
3 rotate alpha $Vector3 0 0 (1::GLfloat)
4 square width

defines a composition of a translate und a rotate transformation, which is applied to a square
figure. A sequence of transformation statements is composed to a single transformation
in the same way as the standard function composition operator (.) composes functions:
(f . g) x = f(g(x)). The compositional function (f . g) is the same as first applying
function g and then applying f. For transformations in HOpenGL this means that for a
sequence of transformations

1 translate$Vector3 x w y
2 rotate alpha $Vector3 0 0 (1::GLfloat)

first the points are rotated and then they are translated.

The order in which transformations are performed is of course not arbitrary. A rotation
after a translation is different to a translation after a rotation.

Example:
This example illustrates the different compositions of rotation and translation.

Compose.hs
1 import PointsForRendering
2 import Squares

CHAPTER 3. MODELLING TRANSFORMATIONS 3-7

3 import Graphics.Rendering.OpenGL
4

5 displayAt x y displayMe = do
6 displayMe
7 loadIdentity
8

9 main = do
10 renderInWindow someSquares
11

12 someSquares = do
13 clearColor $= Color4 1 1 1 1
14 clear [ColorBuffer]

A black square at the origin:
Compose.hs

15 currentColor $= Color4 0 0 0 1
16 square 0.5
17 loadIdentity

A blue square translated:
Compose.hs

18 currentColor $= Color4 0 0 1 1
19 translate$Vector3 0.5 0.5 (0::GLfloat)
20 square 0.5
21 loadIdentity

A light blue square that is rotated:
Compose.hs

22 currentColor $= Color4 0 1 1 1
23 rotate 35 $Vector3 0 0 (1::GLfloat)
24 square 0.5
25 loadIdentity

A red square that is first rotated and then translated:
Compose.hs

26 currentColor $= Color4 1 0 0 1
27 translate$Vector3 0.5 0.5 (0::GLfloat)
28 rotate 35 $Vector3 0 0 (1::GLfloat)
29 square 0.5
30 loadIdentity

A yellow square that is first translated and then rotated:
Compose.hs

31 currentColor $= Color4 1 1 0 1
32 rotate 35 $Vector3 0 0 (1::GLfloat)
33 translate$Vector3 0.5 0.5 (0::GLfloat)
34 square 0.5
35 loadIdentity

CHAPTER 3. MODELLING TRANSFORMATIONS 3-8

Figure 3.4: Different compositions of translation and rotation.

The resulting window can be found in figure 3.4.

Since the scale und the rotate transformation refer both to the origin and the translate
transformation can move objects away from the origin it is a good policy to create objects
at the origin, then rotate and scale it and finally translate it to its final position. Therefore
predefined shapes in the library are usually positioned at the origin, as e.g. the tea pot.

3.5 Defining your own transformation

The three ready to usee transformations rotation, scaling and translation or their com-
position might not suffice for your needs. Then you can define your own transformations.
Technically a transformation in OpenGL is represented as a matrix. Every vertex gets multi-
plied by the transformation matrix before it is rendered. In order to define a transformation,
we will need to construct such a matrix.

Internally every vertex in OpenGL is not represented by 3 coordinates (x, y, z) but by four
coordinates (x, y, z, w). The x, y, z values are devided by w. Usually the value of w is 1.0.

Thus for a transformation matrix you need a matrix of four rows and four columns. Re-
member that a matrix is multiplied with a vector in the following way:

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44




x
y
z
w

 =


x11 ∗ x + x12 ∗ y + x13 ∗ z + x14 ∗ w
x21 ∗ x + x22 ∗ y + x23 ∗ z + x24 ∗ w
x31 ∗ x + x32 ∗ y + x33 ∗ z + x34 ∗ w
x41 ∗ x + x42 ∗ y + x43 ∗ z + x44 ∗ w


OpenGL provides a function for creation of a transformation matrix out of a list: matrix.
It takes as first argument a parameter, which specifies in which order the matrix elements
appear in the list: RowMajor for row wise and ColumMajor for column wise appearance. The
function multMatrix allows to multiply your newly created transformation matrix to the
current transformation context.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-9

3.5.1 Shear

We can now define our own transformations. We can define the transformation shear.
Mathematical textbooks define shear in the following way:

A transformation in which all points along a given line L remain fixed while other
points are shifted parallel to L by a distance proportional to their perpendicular
distance from L. Shearing a plane figure does not change its area.
Eric Weissteins’s world of mathematics (http://mathworld.wolfram.com/Shear.html)

We define a shear transformation, which leaves y and z coordinates unchanged, and adds to
the x coordinate some value depending on the value of y. For some f we need the following
transformation matrix: 

1 f 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x
y
z
w

 =


x + f ∗ y

y
z
w


As you can see, this is almost the identity. We can define this in HOpenGL:

MyTransformations.hs
1 module MyTransformations where
2 import Graphics.Rendering.OpenGL
3 import Graphics.UI.GLUT as GLUT
4

5 shear f = do
6 m <- (newMatrix RowMajor [1,f,0,0
7 ,0,1,0,0
8 ,0,0,1,0
9 ,0,0,0,1])

10 multMatrix (m:: GLmatrix GLfloat)

Let us test our new transformation:

TestShear.hs
1 import PointsForRendering
2 import Circle
3 import Squares
4 import MyTransformations
5

6 import Graphics.Rendering.OpenGL
7 import Graphics.UI.GLUT as GLUT
8

9 main = renderInWindow$do
10 loadIdentity
11 clearColor $= Color4 1 1 1 1
12 clear [ColorBuffer]
13 translate$Vector3 0.5 0.5 (0::GLfloat)
14 shear 0.5
15 currentColor $= Color4 0 0 1 1

CHAPTER 3. MODELLING TRANSFORMATIONS 3-10

16 fillCircle 0.5
17

18 loadIdentity
19 translate$Vector3 (-0.5) (-0.5) (0::GLfloat)
20 shear 0.5
21 currentColor $= Color4 1 0 0 1
22 square 0.5

The resulting window can be found in figure 3.5.

Figure 3.5: Applying shear to some shapes.

3.6 Some Word of Warning

You might get strange effects when you forget to reset the transformation matrix. This
might not only effect further rendering statements but also applies to the redisplay of your
window. The display function you specified for your window will be called whenever the
window needs to be displayed. However this does not automatically reset the transformation
matrix to the identity matrix. This results in the effect that every redisplay of your window
changes its contents.

Example:
In this example a ring is displayed. Each time the display function is called the
contents of the ring moves a bit. Compile the program and hide the resulting
window behind some other window. You will observe how the ring moves within
the window, until it is no longer displayed.

ForgottenReset.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

CHAPTER 3. MODELLING TRANSFORMATIONS 3-11

4 import PointsForRendering
5 import Ring
6 import Squares
7

8 main = renderInWindow display
9

10 display = do
11 clear [ColorBuffer]
12 translate$Vector3 (-0.1) 0.1 (0::GLfloat)
13 ring 0.2 0.4
14 flush

As a matter of fact this effect may not only occur with transformations, but every state
changing statement. If you set the color as last statement in your display function to some
value then this will be the current color in the next call of the display function. Thus it
is better to ensure that the display function leaves a clean state, i.e. the state it espects to
find, when it is called, or even better let the display functions not rely on any previously set
states.

3.7 Local transformations

Often you will have the situation, that you are in a context of some transformations. Maybe
for certain parts of you shape you want to add some further transformation but for other
parts return to the outer transformation context. In such situations you cannot use the
statement loadIdentity since this will not only delete the transformations you wanted
to be applied to your local part of the the complete shape but the whole transformation
context.

HOpenGL provides a function which allows to add some more transformations to some
local parts of your shape. This function is called preservingMatrixs which refers to the
fact that transformations are technically implemented as matrixes. preservingMatrix has
one argument, which is a monadic statement. The application of preservingMatrix is a
monadic statement:

1 preservingMatrix :: IO a -> IO a

Every transformation done within this monadic statement will not be done only locally. It
does not effect the statements which follow after the application of preservingMatrix.

Example:
To demonstrate the use of preservingMatrix we provide a module, which is able
to render a side of the famous Rubik’s Cube. Such a side consists of 9 squares
which are of some color and which have a black frame. We can render such
a shape, by rendering the single framed squares at the origin and then move
them to their position. This movement is done within a preservingMatrix
application.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-12

RubikFace.hs
1 module RubikFace where
2 import Graphics.UI.GLUT
3 import Graphics.Rendering.OpenGL
4

5 import Squares
6 import PointsForRendering

Doing a frame involves the four sides of a frame. Each side is created at the
origin and then moved to its final position:

RubikFace.hs
7 frame width height border = do
8 let bh = border/2
9 let wh = width/2-bh

10 let hh = height/2-bh
11

12 preservingMatrix $ do
13 translate $Vector3 0 hh (0::GLfloat)
14 myRect width border
15 preservingMatrix $ do
16 translate $Vector3 0 (-hh) (0::GLfloat)
17 myRect width border
18 preservingMatrix $ do
19 translate $Vector3 (-wh) 0 (0::GLfloat)
20 myRect border height
21 preservingMatrix $ do
22 translate $Vector3 wh 0 (0::GLfloat)
23 myRect border height

Each of the nine fields is rendered by drawing its frame and its colored square:
RubikFace.hs

24 originField width color = do
25 let frameWidth = width/10
26 currentColor $= Color4 0 0 0 1
27 frame width width frameWidth
28 let sc = 18/20::GLfloat
29 currentColor $= color
30 square (width-frameWidth)

Eventually the side of Rubik’s Cube can be drawn
RubikFace.hs

31 renderArea :: GLfloat -> [[Color4 GLfloat]] -> IO ()
32 renderArea width css
33 = do
34 let cs = concat css
35 cps = zip cs $ areaFields width
36 mapM_ (\(c,f)-> f(originField width c)) cps
37

38 areaFields width =

CHAPTER 3. MODELLING TRANSFORMATIONS 3-13

39 [makeSquare x y |x<-[1,0,-1],y<-[1,0,-1]]
40 where
41 makeSquare xn yn = \f -> preservingMatrix $ do
42 let
43 x = xn*width
44 y = yn*width
45 translate $Vector3 x y 0
46 f
47

48 red = Color4 1 0 0 (1::GLfloat)
49 green = Color4 0 1 0 (1::GLfloat)
50 blue = Color4 0 0 1 (1::GLfloat)
51 yellow = Color4 1 1 0 (1::GLfloat)
52 white = Color4 1 1 1 (1::GLfloat)
53 black = Color4 0 0 0 (1::GLfloat)

The following module tests the rendering. Two sides are rendered. Further
transformations are applied to them.

RenderRubikFace.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5 import RubikFace
6

7 _FIELD_WIDTH :: GLfloat
8 _FIELD_WIDTH = 1/5
9

10 main = renderInWindow faces
11

12 faces = do
13 clearColor $= white
14 clear [ColorBuffer]
15

16 loadIdentity
17 translate $Vector3 (-0.6) 0.4 (0::GLfloat)
18 renderArea _FIELD_WIDTH r1
19

20 loadIdentity
21 translate $Vector3 (0.1) (-0.3) (0::GLfloat)
22 rotate 290 $ Vector3 0 0 (1::GLfloat)
23 scale 1.5 1.5 (1::GLfloat)
24 renderArea _FIELD_WIDTH r1
25

26 r1=[[red,blue,yellow],[white,green,red],[green,yellow,blue]]

The resulting window can be found in figure 3.6.

CHAPTER 3. MODELLING TRANSFORMATIONS 3-14

Figure 3.6: a Side of Rubik’s Cube with further transformations applied to it.

Chapter 4

Projection

4.1 The Function Reshape

Up to now we always relied on the default values for most attributes which are concerned
with projection. From where do we look at the scenery? Which coordinates are displayed
to what extend on the screen. Such attributes can be set in the reshape callback function.
This function gets the window size as argument and specifies which coordinates are to be
seen on the screen. At first glance the name seems to be a bit misleading, since it evokes the
image that it is just called, when someone resizes the window. The first time the reshape
function is called is at the opening of the window.

The reshape function might be empty. This is modelled by the Haskell data type Maybe.

Example:
We define the first reshape function for a window. It is the identity function,
which does not specify anything, how to render the picture.

Reshape1.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8 createWindow progName
9 displayCallback $= display

10 reshapeCallback $= Just reshape
11 mainLoop
12

13 display = do
14 clear [ColorBuffer]
15 displayPoints points Quads
16 where
17 points
18 = [(0.5,0.5,0)

4-1

CHAPTER 4. PROJECTION 4-2

19 ,(-0.5,0.5,0)
20 ,(-0.5,-0.5,0)
21 ,(0.5,-0.5,0)]
22

23 reshape s = return ()

Run this example. You will see a white square in the middle of a black screen.
Now resize the window. You will notice that the size of the square will not
change. If you make the window smaller parts of the picture are not displayed,
if you enlarge the window parts of the window contain no image (which means it
might be some arbitrary image). Figure 4.1 shows how the window looks after
enlarging it a bit.

Figure 4.1: Enlarging a window with the empty reshape function.

4.2 Viewport: The Visible Part of Screen

Usually you want to define in the reshape function, which parts of the window pane are
to be used for rendering the picture. There is a state variable viewport, which contains
exactly this information. It is a pair, of a position and a size. The position is the offset from
the upper left corner in pixels. The size is the size of the screen to be used for rendering in
pixels.

Example:
If you want the window to be used completely for rendering the image, then the

CHAPTER 4. PROJECTION 4-3

position needs to be set to Position 0 0. i.e. no offset and as size the complete
window size is to be used:

Reshape2.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8 createWindow progName
9 displayCallback $= display

10 reshapeCallback $= Just reshape
11 mainLoop
12

13 display = do
14 clear [ColorBuffer]
15 displayPoints points Quads
16 where
17 points
18 = [(0.5,0.5,0)
19 ,(-0.5,0.5,0)
20 ,(-0.5,-0.5,0)
21 ,(0.5,-0.5,0)]
22

23 reshape s@(Size w h) = do
24 viewport $= (Position 0 0, s)

If you start this program and resize the window, then always the complete win-
dow pane will be used for rendering your image.

Example:
In this example only parts of the window are used for rendering the image. The
image is smaller than the window.

Viewport.hs
1 import Graphics.UI.GLUT
2 import Graphics.Rendering.OpenGL
3

4 import PointsForRendering
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8 createWindow progName
9 clearColor $= Color4 0 0 0 0

10 displayCallback $= display
11 reshapeCallback $= Just reshape
12 mainLoop
13

14 display = do

CHAPTER 4. PROJECTION 4-4

15 clearColor $= Color4 1 1 1 1
16 clear [ColorBuffer]
17 currentColor $= Color4 1 0 0 1
18 displayPoints ps1 LineLoop
19 displayPoints ps2 Lines
20 where
21 ps1=[(0.5,0.5,0),(-0.5,0.5,0),(-0.5,-0.5,0),(0.5,-0.5,0)]
22 ps2=[(1,1,0),(-1,-1,0),(-1,1,0),(1,-1,0)]
23

24 reshape s@(Size w h) = do
25 viewport $= (Position 50 50, Size (w-80) (h-60))

The resulting window can be found in figure 4.2.

Figure 4.2: A Viewport smaller than the window.

4.3 Orthographic Projection

The viewport defines which parts of your window pane are used for rendering your image.
The actual projection defines which coordinates you want to display. The simpliest way to
specify this is by the function ortho. It has six arguments, the lower and upper bounds of
the x, y, z coordinates.

Projection is equally as transformation internally expressed in terms of a matrix. The
statement loadIdentity can refer to the transformation or to the projection matrix. A state
variabble matrixMode defines, which of these matrixes these statements refer to. Therefore
it is necessary to switch this variable to the value Projection, before applying the function
ortho and afterwards to reset the variable back to the value ModelView.

Example:
We render the same image in two windows with different projection values:

CHAPTER 4. PROJECTION 4-5

Ortho.hs
1 import PointsForRendering
2 import Graphics.Rendering.OpenGL
3 import Graphics.UI.GLUT as GLUT
4 import Star
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8

9 createWindow (progName++"1")
10 displayCallback $= display
11 projection (-5) 5 (-5) 5 (-5) 5
12

13 createWindow (progName++"2")
14 displayCallback $= display
15 projection 0 0.8 (-0.8) 0.8 (-0.5) 0.5
16

17 mainLoop
18

19 projection xl xu yl yu zl zu = do
20 matrixMode $= Projection
21 loadIdentity
22 ortho xl xu yl yu zl zu
23 matrixMode $= Modelview 0
24

25 display = do
26 clearColor $= Color4 1 1 1 1
27 clear [ColorBuffer]
28 currentColor $= Color4 1 0 0 1
29 star 0.9 7
30 currentColor $= Color4 1 1 0 1
31 star 0.4 5

The resulting windows can be found in figure 4.3.

ortho is the simpliest projection we can define. When we will consider third dimensional
szeneries we will learn a more powerful projection.

CHAPTER 4. PROJECTION 4-6

Figure 4.3: Two windows with different projection.

Chapter 5

Changing States

OpenGL is not only designed to render static images, but to have changing images. There
are to ways how your image might change:

• it might react to some event, like some keyboard input or mouse event.

• it might change over time.

In order to change your image in some coordinated way, you need a state which can change.
An event may change your state, or over the time your state might be changed.

5.1 Modelling your own State

A state is of course something, which does not match the purely functional paradigm of
Haskell. However in the context of I/O the designers of Haskell came up with some clever
way to integrate state changing variables into the Haskell’s purely functional setting. The
trick are again monads, as you have seen before for the state machine of OpenGL. There
is a standard library in Haskell for state changing variables: Data.IORef. This provides
functions for creation, setting, retrieving and modification of state variables. These functions
are called:
newIORef, writeIORef, readIORef, modifyIORef.

If you think these names a bit too technical, then you might use the following module, which
makes IORef variables instances of the type classes HasGetter and HasSetter. Thus we
can use our own state variables in the same way, we use the HOpenGL state variables.1

StateUtil.hs
1 module StateUtil where
2

3 import Graphics.Rendering.OpenGL
4 import Data.IORef
5 import Graphics.UI.GLUT
6

1This is no longer necessary, since this has been integrated into the HOpenGL library.

5-1

CHAPTER 5. CHANGING STATES 5-2

7 --instance HasSetter IORef where
8 -- ($=) var val = writeIORef var val
9

10 --instance HasGetter IORef where
11 -- get var = readIORef var
12

13 new = newIORef

5.2 Handling of Events

Now we know how to modell our own state. We can use this for reacting on some events.
Event handling in HOpenGL is done by setting a callback function for mouse and keyboard
events. A callback function for mouse and keyboard events needs to be of the following type:

1 type KeyboardMouseCallback =
2 Key -> KeyState -> Modifiers -> Position -> IO ()

A Key can be some character, some special character or some mouse buttom:

1 data Key
2 = Char Char
3 | SpecialKey SpecialKey
4 | MouseButton MouseButton
5 deriving (Eq, Ord, Show)

The keystate informs, if the key has been pressed or released.

1 data KeyState
2 = Down
3 | Up
4 deriving (Eq, Ord, Show)

A modifier denotes, if some extra key is used, like the alt, strg or shift key:

1 data Modifiers = Modifiers { shift, ctrl, alt :: KeyState }
2 deriving (Eq, Ord, Show)

And finally the position informs about the current mouse pointer position.

5.2.1 Keyboard events

With the close look at the event handling function above it is fairly easy to write a program
that reacts on keyboard events. A function of type KeyboardMouseCallback is to be written
and assigned to the state variable keyboardMouseCallback of your window. Usually your

CHAPTER 5. CHANGING STATES 5-3

KeyboardMouseCallback will have access to some of your state variables, since you want to
change a state when an event occurs. When the state has been changed, HOpenGL needs to
be forced to redisplay the picture with the new state values. Therefore a call to the function
postRedisplay needs to be done.

Example:
In this example we draw a circle. The radius of the circle can be changed by use
of the + and - key.

State.hs
1 import Circle
2 import PointsForRendering
3 import StateUtil
4

5 import Graphics.Rendering.OpenGL
6 import Data.IORef
7 import Graphics.UI.GLUT
8

9 main = do
10 (progName,_) <- getArgsAndInitialize
11 createWindow progName

We create a state variable which stores the current radius of the circle:
State.hs

12 radius <- new 0.1

The display function gets this state variable as first argument:
State.hs

13 displayCallback $= display radius

And the keyboard callback gets this variable as first argument:
State.hs

14 keyboardMouseCallback $= Just (keyboard radius)
15 mainLoop

The display function gets the current value for the radius and draws a filled
circle:

State.hs
16 display radius = do
17 clear [ColorBuffer]
18 r <- get radius
19 fillCircle r

The keyboard callback reacts on two keyboard events. The value of the radius
variable are changed:

State.hs
20 keyboard radius (Char ’+’) Down _ _ = do
21 r <- get radius
22 radius $= r+0.05

CHAPTER 5. CHANGING STATES 5-4

23 postRedisplay Nothing
24 keyboard radius (Char ’-’) Down _ _ = do
25 r <- get radius
26 radius $= r-0.05
27 postRedisplay Nothing
28 keyboard _ _ _ _ _ = return ()

Compile and start this program and press the + and - key.

5.3 Changing State over Time

The second way to change your picture is over time. You can create an animation if your
picture changes a tiny bit every moment. In HOpenGL you can a define a so called idle
function. This function will be evaluated whenever the picture has been displayed. There
you can define, in what way your state will change before the next redisplay is performed.
The last statement in an idle function will be usually a call to postRedisplay.

Example:
We define our first animation. A ring is displayed with a changing radius.

Idle.hs
1 import Ring
2 import PointsForRendering
3 import StateUtil
4

5 import Graphics.Rendering.OpenGL
6 import Data.IORef
7 import Graphics.UI.GLUT as GLUT

We define a constant which denotes the value by which the radius changes be-
tween every redisplay:

Idle.hs
8

9 _STEP = 0.001

Within the main function an idle callback is added to the window:
Idle.hs

10 main = do
11 (progName,_) <- getArgsAndInitialize
12 createWindow progName
13 radius <- new 0.1
14 step <- new _STEP
15 displayCallback $= display radius
16 idleCallback $= Just (idle radius step)
17 mainLoop

The display function renders a ring, depending on the state variable for the
radius:

CHAPTER 5. CHANGING STATES 5-5

Idle.hs
18 display radius = do
19 clear [ColorBuffer]
20 r <- get radius
21 ring r (r+0.2)
22 flush

The idle function changes the value of the variable radius depending on the
second state variable step.

Idle.hs
23 idle radius step = do
24 r <- get radius
25 s <- get step
26 if r>=1 then step $= (-_STEP)
27 else if r<=0 then step $= _STEP
28 else return ()
29 s <- get step
30 radius $= r+s
31 postRedisplay Nothing

5.3.1 Double buffering

The animation created in the last example was not very satisfactory. A ring with chang-
ing radius was displayed, but the animation was somehow flickering. The reason for that
was, that the display function as its first statement clears the screen, i.e. makes it allto-
gether black. Only afterwards the ring is rendered. For a short moment the screen will be
completely black. This is what makes this flickering effect.

A common solution for this problem in animated pictures is, not to apply the statements of
the display function directly to the screen, but to an invisible buffer. When all statements
of the display function have been applied to this invisible background buffer, this buffer is
copied to the screen. This way only the ready to use final picture is shown on screen and
not any intermediate rendering step (e.g. the picture after the clear statement).

OpenGL provides a double buffering mechanism. We only have to activate this. Therefore
we need to set the initial display mode variable accordingly. Instead of a call to the function
flush a call to the function swapBuffers needs to be done as last statement of the display
function.

Example:
The ring with changing radius over time now with double buffering.

Double.hs
1 import Ring
2 import PointsForRendering
3 import StateUtil
4

5 import Graphics.Rendering.OpenGL
6 import Data.IORef
7 import Graphics.UI.GLUT as GLUT

CHAPTER 5. CHANGING STATES 5-6

8

9 _STEP = 0.001
10

11 main = do
12 (progName,_) <- getArgsAndInitialize
13 initialDisplayMode $= [DoubleBuffered]
14 createWindow progName
15 radius <- new 0.1
16 step <- new _STEP
17 displayCallback $= display radius
18 idleCallback $= Just (idle radius step)
19 mainLoop
20

21 display radius = do
22 clear [ColorBuffer]
23 r <- get radius
24 ring r (r+0.2)
25 swapBuffers
26

27 idle radius step = do
28 r <- get radius
29 s <- get step
30 if r>=1 then step $= (-_STEP)
31 else if r<=0 then step $= _STEP
32 else return ()
33 s <- get step
34 radius $= r+s
35 postRedisplay Nothing

5.4 Pong: A first Game

By now you have seen a lot of tiny examples. It is time to draw the techniques together
and do an application with HOpenGL. In this section we will implement one of the first
animated computer games ever: Pong. It consists of a small white circle which moves over
a black screen and two paddles which can move on a vertical line.

Pong in action can be found in figure 5.1.

Pong.hs
1 import Circle
2 import Squares
3 import PointsForRendering
4 import StateUtil
5

6 import Graphics.Rendering.OpenGL
7 import Data.IORef
8 import Graphics.UI.GLUT as GLUT

CHAPTER 5. CHANGING STATES 5-7

Figure 5.1: Pong in action.

First of all we define some constant values for the game: x-, y-coordinates of the game,
width and height of a paddle, the radius of the ball, initial factor, how a ball and a paddle
changes its position, and an initial board size.

Pong.hs
9 _LEFT = -2

10 _RIGHT = 1
11 _TOP = 1
12 _BOTTOM= -1
13

14 paddleWidth = 0.07
15 paddleHeight = 0.2
16 ballRadius = 0.035
17

18 _INITIAL_WIDTH :: GLsizei
19 _INITIAL_WIDTH=400
20

21 _INITIAL_HEIGHT::GLsizei
22 _INITIAL_HEIGHT=200
23

24 _INITIAL_BALL_DIR = 0.002
25 _INITIAL_PADDLE_DIR = 0.005

We define a data type, game. The game state can be characterized by the position of the
ball and the values these coordinates change for the next redisplay:

Pong.hs
26 data Ball = Ball (GLfloat,GLfloat) GLfloat GLfloat

The paddles, which are characterized by their position and the position change on the y-axis
(x-axis is fixed for a paddle).

Pong.hs
27 type Paddle = (GLfloat,GLfloat,GLfloat)

CHAPTER 5. CHANGING STATES 5-8

Additionally a game has points for the left and the right player and a factor which denotes
how fast ball and paddles move:

Pong.hs
28 data Game
29 = Game { ball ::Ball
30 , leftP,rightP :: Paddle
31 , points ::(Int,Int)
32 , moveFactor::GLfloat}
33

For a starting game we provide the following initial game state:
Pong.hs

34 initGame
35 = Game {ball=Ball (-0.8,0.3) _INITIAL_BALL_DIR _INITIAL_BALL_DIR
36 ,leftP=(_LEFT+paddleWidth,_BOTTOM,0)
37 ,rightP=(_RIGHT-2*paddleWidth,_BOTTOM,0)
38 ,points=(0,0)
39 ,moveFactor=1
40 }

The main function creates a double buffering window in fullscreen mode. An initial game
state is created and passed to the keyboard, display, idle and reshape function:

Pong.hs
41 main = do
42 (progName,_) <- getArgsAndInitialize
43 initialDisplayMode $= [DoubleBuffered]
44 createWindow progName
45 game <- newIORef initGame
46 --windowSize $= Size _INITIAL_WIDTH _INITIAL_HEIGHT
47 fullScreen
48 displayCallback $= display game
49 idleCallback $= Just (idle game)
50 keyboardMouseCallback $= Just (keyboard game)
51 reshapeCallback $= Just (reshape game)
52 mainLoop

The display function simply gets the ball and paddles from the game state and renders these:
Pong.hs

53 display game = do
54 clear [ColorBuffer]
55 g <- get game
56 let (Ball pos xDir yDir) = ball g
57 --a ball is a circle
58 displayAt pos $ fillCircle ballRadius
59 displayPaddle$leftP g
60 displayPaddle$rightP g
61 swapBuffers

CHAPTER 5. CHANGING STATES 5-9

Paddles are simply rectangles:

Pong.hs
62 displayPaddle (x,y,_) = preservingMatrix$do
63 translate$Vector3 (paddleWidth/2) (paddleHeight/2) 0
64 displayAt (x,y)$myRect paddleWidth paddleHeight

We made use of the utility function which moves a shape to some position:

Pong.hs
65 displayAt (x, y) displayMe = preservingMatrix$do
66 translate$Vector3 x y (0::GLfloat)
67 displayMe

Within the idle function ball and paddles need to be set to their next position on the field:

Pong.hs
68 idle game = do
69 g <- get game
70 let fac = moveFactor g
71 game
72 $= g{ball = moveBall g
73 ,leftP = movePaddle (leftP g) fac
74 ,rightP = movePaddle (rightP g) fac
75 }
76 postRedisplay Nothing

The movement on the ball is determined by the upper and lower bound of the field, by the
left and right bound of the field and the position of the paddles:

Pong.hs
77 moveBall g
78 = Ball (x+factor*newXDir,y+factor*newYDir) newXDir newYDir
79 where
80 newXDir
81 | x-ballRadius <= xl+paddleWidth
82 && y+ballRadius >=yl
83 && y <=yl+paddleHeight
84 = -xDir
85 |x <= _LEFT-ballRadius = 0
86 | x+ballRadius >= xr
87 && y+ballRadius >=yr
88 && y <=yr+paddleHeight
89 = -xDir
90 |x >= _RIGHT+ballRadius = 0
91 |otherwise = xDir
92 newYDir
93 |y > _TOP-ballRadius || y< _BOTTOM+ballRadius = -yDir
94 |newXDir == 0 = 0
95 |otherwise = yDir

CHAPTER 5. CHANGING STATES 5-10

96 (Ball (x,y) xDir yDir) = ball g
97 factor = moveFactor g
98 (xl,yl,_) = leftP g
99 (xr,yr,_) = rightP g

100

A paddle moves only on the y-axis. We just need to ensure that it does not leaves the field.
There are maximum and minimum values for y:

Pong.hs
101 movePaddle (x,y,dir) factor =
102 let y1 = y+ factor*dir
103 newY = min (_TOP-paddleHeight) $max _BOTTOM y1
104 in (x,newY,dir)

The keyboard function: key ’a’ moves the left paddle, key ’l’ the right paddle and the space
key gets a new ball:

Pong.hs
105

106 keyboard game (Char ’a’) upDown _ _ = do
107 g <- get game
108 let (x,y,_) = leftP g
109 game $= g{leftP=(x,y,paddleDir upDown)}
110 keyboard game (Char ’l’) upDown _ _ = do
111 g <- get game
112 let (x,y,_) = rightP g
113 game $= g{rightP=(x,y,paddleDir upDown)}
114 keyboard game (Char ’\32’) Down _ _ = do
115 g <- get game
116 let Ball (x,y) xD yD = ball g
117 let xDir
118 |x<=_LEFT+3*paddleWidth = _INITIAL_BALL_DIR
119 |x>=_RIGHT-3*paddleWidth = - _INITIAL_BALL_DIR
120 |otherwise = xD
121 if (xD==0)
122 then game$=g{ball=Ball (x+4*xDir,y) xDir _INITIAL_BALL_DIR}
123 else return ()
124 keyboard _ _ _ _ _ = return ()
125

126 paddleDir Down = _INITIAL_PADDLE_DIR
127 paddleDir Up = -_INITIAL_PADDLE_DIR

Finally we define the visual part of the screen. The movement factor of the ball depends on
the width of the screen:

Pong.hs
128 reshape game s@(Size w h) = do
129 viewport $= (Position 0 0, s)
130 matrixMode $= Projection

CHAPTER 5. CHANGING STATES 5-11

131 loadIdentity
132 ortho (-2.0) 1.0 (-1.0) 1.0 (-1.0) 1.0
133 matrixMode $= Modelview 0
134 g <- get game
135 game$=g{moveFactor=fromIntegral w/fromIntegral _INITIAL_WIDTH}

Have a break and play Pong.

Chapter 6

Third Dimension

Up to now everything was pretty boring. We never considered the three dimensional space
provided by OpenGL. Strictly we just considered two dimensions. Thus the library was not
any more powerfull than any simple graphics libaray e.g. like Java’s java.awt.Graphics
class. In this chapter we will explore the true power of OpenGL by actually rendering three
dimensional objects.

6.1 Hidden Shapes

In a three dimensional space some objects will be in front of others and hide them. We
would expect to see only those areas which are not hidden by areas closer to the viewer.

Example:
We render two shapes. A red square which is closer to the viewer and a blue
circle which is farer away:

NotHidden.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3 import Squares
4 import Circle
5 import PointsForRendering
6

7 main = do
8 (progName,_) <- getArgsAndInitialize
9 createWindow progName

10 displayCallback $= display
11 clearColor $= Color4 1 1 1 1
12 mainLoop
13

14 display = do
15 clear [ColorBuffer,DepthBuffer]
16 loadIdentity
17 translate (Vector3 0 0 (-0.5::GLfloat))

6-1

CHAPTER 6. THIRD DIMENSION 6-2

18 currentColor $= Color4 1 0 0 1
19 square 1
20

21 loadIdentity
22 translate (Vector3 0.2 0.2 (0.5::GLfloat))
23 currentColor $= Color4 0 0 1 1
24 fillCircle 0.5
25 flush

However as can be seen in figure 6.1, the blue circle hides parts of the red square.

Figure 6.1: Third dimension not correctly taken into account.

By default OpenGL does not take the depth into account. Shapes rendered later hide other
shapes which were rendered earlier, neglecting the depth of the shapes. OpenGL provides
a mechanism for automatically considering the depth of a shape. This simply needs to be
activated. Three steps need to be done:

• as initial display mode WithDepthBuffer needs to be set.

• a depth function needs to be set. Usually the Less mode is used as function here.
This ensures that closer objects hide objects farer away.

• the depth buffer needs to be cleared in the beginning of the display function.

Example:
Now we render the same to shapes as in the example before, but the depth
machanism of OpenGL is activated.

Hidden.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

CHAPTER 6. THIRD DIMENSION 6-3

4 import Squares
5 import Circle
6 import PointsForRendering
7

8 main = do
9 (progName,_) <- getArgsAndInitialize

10 initialDisplayMode $= [WithDepthBuffer]
11

12 createWindow progName
13

14 depthFunc $= Just Less
15 displayCallback $= display
16 clearColor $= Color4 1 1 1 1
17 mainLoop
18

19 display = do
20 clear [ColorBuffer,DepthBuffer]
21 loadIdentity
22 translate (Vector3 0 0 (-0.5::GLfloat))
23 currentColor $= Color4 1 0 0 1
24 square 1
25

26 loadIdentity
27 translate (Vector3 0.2 0.2 (0.5::GLfloat))
28 currentColor $= Color4 0 0 1 1
29 fillCircle 0.5
30 flush

Now as can be seen in figure 6.2, the red square hides parts of the blue circle.

Figure 6.2: Third dimension correctly taken into account by use of depth function.

CHAPTER 6. THIRD DIMENSION 6-4

6.2 Perspective Projection

In the real world objects closer to the viewer appear larger than objects farer away from
the viewer. Up to now we only learnt how to set up an orthographic projection. In an
orthographic projection objects farer away have the same size as object close to the viewer.

Example:
We can test the orthographic projection. Two squares equally in size, but in
different distances from the viewer are rendered:

NotSmaller.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Squares
5 import Circle
6 import PointsForRendering
7

8 main = do
9 (progName,_) <- getArgsAndInitialize

10 initialDisplayMode $= [WithDepthBuffer]
11 createWindow progName
12 depthFunc $= Just Less
13 displayCallback $= display
14

15 matrixMode $= Projection
16 loadIdentity
17 ortho (-5) 5 (-5) 5 (1) 40
18 matrixMode $= Modelview 0
19

20 clearColor $= Color4 1 1 1 1
21 mainLoop
22

23 display = do
24 clear [ColorBuffer,DepthBuffer]
25 loadIdentity
26 translate (Vector3 0 0 (-2::GLfloat))
27 currentColor $= Color4 1 0 0 1
28 square 1
29

30 loadIdentity
31 translate (Vector3 4 4 (-5::GLfloat))
32 currentColor $= Color4 0 0 1 1
33 square 1
34 flush

As can be seen in figure 6.3 , the two squares have the same size, even though
the red one is closer to the viewer.

OpenGL provides the function frustum for specifying a perspective projection. frustum
has 6 arguments:

CHAPTER 6. THIRD DIMENSION 6-5

Figure 6.3: Two squares in orthographic projection.

• left: left bound for the closest orthogonal plane

• right: right bound for the closest orthogonal plane

• top: upper bound for the closest orthogonal plane

• bottom: lower bound for the closest orthogonal plane

• near: the closest things that can be seen

• far: the farest away things that can be seen

Figure 6.4 illustrates these six values.

Figure 6.4: Perspective projection with frustum.

Usually you will have negated values for top/botton and left/right.

CHAPTER 6. THIRD DIMENSION 6-6

Example:
Now we render the two squares from the previous example again. This time we
use a perspective projection:

Smaller.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Squares
5 import Circle
6 import PointsForRendering
7

8 main = do
9 (progName,_) <- getArgsAndInitialize

10 initialDisplayMode $= [WithDepthBuffer]
11 createWindow progName
12 depthFunc $= Just Less
13 displayCallback $= display
14

15 matrixMode $= Projection
16 loadIdentity
17 let near = 1
18 far = 40
19 right = 1
20 top = 1
21 frustum (-right) right (-top) top near far
22 matrixMode $= Modelview 0
23

24 clearColor $= Color4 1 1 1 1
25 mainLoop
26

27 display = do
28 clear [ColorBuffer,DepthBuffer]
29 loadIdentity
30 translate (Vector3 0 0 (-2::GLfloat))
31 currentColor $= Color4 1 0 0 1
32 square 1
33

34 loadIdentity
35 translate (Vector3 4 4 (-5::GLfloat))
36 currentColor $= Color4 0 0 1 1
37 square 1
38 flush

Now, as can be seen in figure 6.5, the blue square appears to be smaller than the
red square.

HopenGL provides a second function to define a perspective projection: perspective. Here
instead of left, right, top, bottom an angle between the top/bottom ray and the width of
the closest plane can be specified.

Figure 6.6 illustrates these values.

CHAPTER 6. THIRD DIMENSION 6-7

Figure 6.5: Two squares in perspective projection.

Figure 6.6: Perspective projection.

6.3 Setting up the Point of View

In the previous section we have learnt that there is a second way how to project the three
dimensional space onto the two dimensional area of the screen. We did however not yet
specify, where in the three dimensional space the viewer is situated and in what direction
they are looking. In order to define this, OpenGL provides the function lookAt. It has three
arguments:

• the point, where the viewer is situated.

• the point at which the viewer is looking.

• and a vector, which specifies the direction which is to be up for the viewer.

CHAPTER 6. THIRD DIMENSION 6-8

6.3.1 Oribiting around the origin

The point of view, where we are looking from is interesting, when we change it. In the
following a module is defined, which allows the viewer to move along a sphere. The point
of view can be set for a given sphere position. The position is specified by two angles and
a radius. The first angle defines which way to move around the x-axis the second angle,
which angle to move around the y-axis. The radius defines the distance from the origin.
The position can be changed through keyboard events.

OrbitPointOfView.hs
1 module OrbitPointOfView where
2

3 import Graphics.Rendering.OpenGL
4 import Graphics.UI.GLUT as GLUT
5

6 import StateUtil
7 import Data.IORef
8

9 setPointOfView pPos = do
10 (alpha,beta,r) <- get pPos
11 let
12 (x,y,z) = calculatePointOfView alpha beta r
13 (x2,y2,z2) = calculatePointOfView ((alpha+90)‘mod‘ 360) beta r
14 lookAt (Vertex3 x y z) (Vertex3 0 0 0) (Vector3 x2 y2 z2)
15

16 calculatePointOfView alp bet r =
17 let alpha = fromIntegral alp*2*pi/fromIntegral 360
18 beta = fromIntegral bet*2*pi/fromIntegral 360
19 y = r * cos alpha
20 u = r * sin alpha
21 x = u * cos beta
22 z = u * sin beta
23 in (x,y,z)
24

25 keyForPos pPos (Char ’+’) = modPos pPos (id,id,\x->x-0.1)
26 keyForPos pPos (Char ’-’) = modPos pPos (id,id,(+)0.1)
27 keyForPos pPos (SpecialKey KeyLeft) = modPos pPos (id,(+)359,id)
28 keyForPos pPos (SpecialKey KeyRight)= modPos pPos (id,(+)1,id)
29 keyForPos pPos (SpecialKey KeyUp) = modPos pPos ((+)1,id,id)
30 keyForPos pPos (SpecialKey KeyDown) = modPos pPos ((+)359,id,id)
31 keyForPos _ _ = return ()
32

33 modPos pPos (ffst,fsnd,ftrd) = do
34 (alpha,beta,r) <- get pPos
35 pPos $= (ffst alpha ‘mod‘ 360,fsnd beta ‘mod‘ 360,ftrd r)
36 postRedisplay Nothing
37

38 reshape screenSize@(Size w h) = do
39 viewport $= ((Position 0 0), screenSize)
40 matrixMode $= Projection
41 loadIdentity

CHAPTER 6. THIRD DIMENSION 6-9

42 let near = 0.001
43 far = 40
44 fov = 90
45 ang = (fov*pi)/(360)
46 top = near / (cos(ang) / sin(ang))
47 aspect = fromIntegral(w)/fromIntegral(h)
48 right = top*aspect
49 frustum (-right) right (-top) top near far
50 matrixMode $= Modelview 0

Example:
Let us use the module above, to orbit around a cube. Therefore we a define
simple module, which renders a cube with differently colored areas. The cube
is situated at the origin. We render the six areas by rendering a square at the
origin and translate and rotate it into its final position.

ColorCube.hs
1 module ColorCube where
2

3 import Graphics.Rendering.OpenGL
4 import Graphics.UI.GLUT as GLUT
5

6 import Squares
7 import StateUtil
8

9 locally = preservingMatrix
10

11 colorCube n = do
12 locally $ do
13 currentColor $= Color4 1 0 0 1
14 translate$Vector3 0 0 (-n/2)
15 square n
16 locally $ do
17 currentColor $= Color4 0 1 0 1
18 translate$Vector3 0 0 (n/2)
19 square n
20 locally $ do
21 currentColor $= Color4 0 0 1 1
22 translate$Vector3 (n/2) 0 0
23 rotate 90 $Vector3 0 (1::GLfloat) 0
24 square n
25 locally $ do
26 currentColor $= Color4 1 1 0 1
27 translate$Vector3 (-n/2) 0 0
28 rotate 90 $Vector3 0 (1::GLfloat) 0
29 square n
30 locally $ do
31 currentColor $= Color4 0 1 1 1
32 translate$Vector3 0 (-n/2) 0
33 rotate 90 $Vector3 (1::GLfloat) 0 0

CHAPTER 6. THIRD DIMENSION 6-10

34 square n
35 locally $ do
36 currentColor $= Color4 1 1 1 1
37 translate$Vector3 0 (n/2) 0
38 rotate 90 $Vector3 (1::GLfloat) 0 0
39 square n

The following program allows to use the cursor keys to move around a cube at
the origin:

OrbitAroundCube.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Squares
5 import OrbitPointOfView
6 import StateUtil
7 import ColorCube
8

9 main = do
10 (progName,_) <- getArgsAndInitialize
11 initialDisplayMode $= [WithDepthBuffer,DoubleBuffered]
12 createWindow progName
13 depthFunc $= Just Less
14

15 pPos <- new (90::Int,270::Int,2.0)
16 keyboardMouseCallback $= Just (keyboard pPos)
17

18 displayCallback $= display pPos
19 reshapeCallback $= Just reshape
20 mainLoop

The display function sets the viewer’s position before rendering the cube:
OrbitAroundCube.hs

21 display pPos = do
22 loadIdentity
23 setPointOfView pPos
24 clear [ColorBuffer,DepthBuffer]
25 colorCube 1
26 swapBuffers

As keyboard function we map directly to the function defined in
OrbitPointOfView.

OrbitAroundCube.hs
27 keyboard pPos c _ _ _ = keyForPos pPos c

An example how the colored cube can now be seen is given in figure 6.7.

CHAPTER 6. THIRD DIMENSION 6-11

Figure 6.7: A view of the colored cube,

6.4 3D Game: Rubik’s Cube

In this section we implement a primitive version of Rubik’s cube.

Rubik’s cube in action can be found in figure 6.8.

Figure 6.8: Rubik’s Cube in action.

CHAPTER 6. THIRD DIMENSION 6-12

6.4.1 Cube Logics

First of all we modell the logics of Rubic’s Cube1.

A data type is provided for representation of a cube:

RubikLogic.hs
1 module RubikLogic where
2

3 data Rubik a
4 = Rubik (Front a) (Top a) (Back a) (Bottom a) (Left a) (Right a)
5

6 type Front a = Area a
7 type Top a = Area a
8 type Back a = Area a
9 type Bottom a = Area a

10 type Left a = Area a
11 type Right a = Area a
12

13 type Area a = [Row a]
14 type Row a = [a]
15

16 data AreaPosition = Front |Top| Back| Bottom| Left| Right
17

18 data RubikColor = Red|Blue|Yellow|Green|Orange|White|Black

We make the type Rubik an instance of the class Functor:

RubikLogic.hs
19 instance Functor Rubik where
20 fmap f (Rubik front top back bottom left right)
21 = Rubik (mf front) (mf top) (mf back)
22 (mf bottom) (mf left) (mf right)
23 where
24 mf = map (map f)

The initial cube is defined

RubikLogic.hs
25 initCube = Rubik (area Red) (area Blue) (area Yellow)
26 (area Green)(area Orange)(area White)
27

28 area c = [[c,c,c],[c,c,c],[c,c,c]]

The main operation on a cube is to turn one of its six sides. The function rotateArea
specifies, how this effects a cube.

1There are certainly cleverer ways to do this, but I did not take the time to think of them.

CHAPTER 6. THIRD DIMENSION 6-13

RubikLogic.hs
29 rotateArea RubikLogic.Front
30 (Rubik front top back bottom left right) =
31 Rubik front’ top’ back bottom’ left’ right’
32 where
33 top’ = newRow 3 (reverse$column 3 left) top
34 bottom’ = newRow 1 (reverse$column 1 right) bottom
35 left’ = newColumn 3 (row 1 bottom) left
36 right’ = newColumn 1 (row 3 top) right
37 front’ = rotateBy3 front
38

39 rotateArea RubikLogic.Back
40 (Rubik front top back bottom left right) =
41 Rubik front’ top’ back’ bottom’
42 (rotateBy2 left’) (rotateBy2 right’)
43 where
44 (Rubik back’ bottom’ front’ top’ left’ right’) =
45 rotateArea RubikLogic.Front
46 (Rubik back bottom front top
47 (rotateBy2 left) (rotateBy2 right))
48

49 rotateArea RubikLogic.Bottom
50 (Rubik front top back bottom left right) =
51 Rubik front’ top back’ bottom’ left’ right’
52 where
53 back’ = newRow 1 (reverse$row 3 left) back
54 front’ = newRow 3 (row 3 right) front
55 left’ = newRow 3 (row 3 front) left
56 right’ = newRow 3 (reverse$row 1 back) right
57 bottom’ = rotateBy1 bottom
58

59

60 rotateArea RubikLogic.Top
61 (Rubik front top back bottom left right) =
62 Rubik front’ top’ back’ bottom left’ right’
63 where
64 back’ = newRow 3 (reverse$row 1 right) back
65 front’ = newRow 1 (row 1 left) front
66 left’ = newRow 1 (reverse$row 3 back) left
67 right’ = newRow 1 (row 1 front) right
68 top’ = rotateBy1 top
69

70 rotateArea RubikLogic.Left
71 (Rubik front top back bottom left right) =
72 Rubik front’ top’ back’ bottom’ left’ right
73 where
74 top’ = newColumn 1 (column 1 front) top
75 bottom’ = newColumn 1 (column 1 back) bottom
76 left’ = rotateBy3 left
77 back’ = newColumn 1 (column 1 top) back

CHAPTER 6. THIRD DIMENSION 6-14

78 front’ = newColumn 1 (column 1 bottom) front
79

80 rotateArea RubikLogic.Right
81 (Rubik front top back bottom left right) =
82 Rubik front’ top’ back’ bottom’ left right’
83 where
84 top’ = newColumn 3 (column 3 back) top
85 bottom’ = newColumn 3 (column 3 front) bottom
86 right’ = rotateBy3 right
87 back’ = newColumn 3 (column 3 bottom) back
88 front’ = newColumn 3 (column 3 top) front
89

90 rotateBy1
91 [[x1,x2,x3]
92 ,[x8,x,x4]
93 ,[x7,x6,x5]] =
94 [[x3,x4,x5]
95 ,[x2,x,x6]
96 ,[x1,x8,x7]]
97

98 rotateBy2 = rotateBy1 .rotateBy1
99 rotateBy3 = rotateBy2 .rotateBy1

Finally some useful functions for manipulation of an area are given.
RubikLogic.hs

100 column n = map (\row->row !! (n-1))
101

102 row n area = area !!(n-1)
103

104 newRow 1 row [a,r,ea] = [row,r,ea]
105 newRow 2 row [a,r,ea] = [a,row,ea]
106 newRow 3 row [a,r,ea] = [a,r,row]
107

108 newColumn n column area = map (doIt n) areaC
109 where
110 areaC = zip area column
111 doIt 1 ((r:ow),c) = c:ow
112 doIt 2 ((r:o:w),c) = r:c:w
113 doIt 3 ((r:o:w:xs),c) = r:o:c:xs

6.4.2 Rendering the Cube

We have a logical modell of a cube. Now we can render this in a coordinate system. In an
earlier section we allready provided a function to render one single side. We simply need to
render the six sides and move them to the correct position.

RenderRubik.hs
1 module RenderRubik where
2

CHAPTER 6. THIRD DIMENSION 6-15

3 import Graphics.Rendering.OpenGL as OpenGL hiding (Red,Green,Blue)
4 import Graphics.UI.GLUT as GLUT hiding (Red,Green,Blue)
5

6 import PointsForRendering
7 import RubikLogic
8 import RubikFace
9 import Squares

10

11 _FIELD_WIDTH :: GLfloat
12 _FIELD_WIDTH = 1/3
13

14 renderCube (Rubik front top back bottom left right) = do
15 render RubikLogic.Top top
16 render RubikLogic.Back back
17 render RubikLogic.Front front
18 render RubikLogic.Bottom bottom
19 render RubikLogic.Left left
20 render RubikLogic.Right right
21

22 render Top cs = preservingMatrix$do
23 translate $Vector3 (1.5*_FIELD_WIDTH) 0 0
24 rotate (90)$Vector3 0 1 (0::GLfloat)
25 renderCubeSide cs
26

27 render RubikLogic.Back cs = preservingMatrix$ do
28 translate $Vector3 0 0 (-1.5*_FIELD_WIDTH)
29 rotate (180)$Vector3 0 0 (1::GLfloat)
30 rotate (180)$Vector3 1 0 (0::GLfloat)
31 renderCubeSide cs
32

33 render Bottom cs = preservingMatrix$ do
34 translate $Vector3 (-1.5*_FIELD_WIDTH) 0 0
35 rotate (270)$Vector3 0 1 (0::GLfloat)
36 renderCubeSide cs
37

38 render RubikLogic.Front cs = preservingMatrix$ do
39 translate $Vector3 0 0 (1.5*_FIELD_WIDTH)
40 renderCubeSide cs
41

42 render RubikLogic.Left cs = preservingMatrix$ do
43 translate $Vector3 0 (1.5*_FIELD_WIDTH) 0
44 rotate (270) $Vector3 1 0 (0::GLfloat)
45 renderCubeSide cs
46

47 render RubikLogic.Right cs = preservingMatrix$ do
48 translate $Vector3 0 (-1.5*_FIELD_WIDTH) 0
49 rotate (270) $Vector3 1 0 (0::GLfloat)
50 rotate (180)$Vector3 1 0 (0::GLfloat)
51 renderCubeSide cs
52

CHAPTER 6. THIRD DIMENSION 6-16

53 renderCubeSide css = renderArea _FIELD_WIDTH css
54

55 field = square _FIELD_WIDTH

The following function maps our abstract color type to concrete OpenGL colors:

RenderRubik.hs
56 doColor Red = Color4 1 0 0 1.0
57 doColor Green = Color4 0 1 0 1.0
58 doColor Blue = Color4 0 0 1 1.0
59 doColor Yellow = Color4 1 1 0 1.0
60 doColor Orange = Color4 1 0.5 0.5 1
61 doColor White = Color4 1 1 1 1.0
62 doColor Black = Color4 0 0 0 1.0

6.4.3 Rubik’s Cube

Finally we can create a simple application.

RubiksCube.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Data.IORef
5

6 import OrbitPointOfView
7 import StateUtil
8 import RubikLogic
9 import RenderRubik

10

11 main = do
12 initialDisplayMode $= [DoubleBuffered,RGBMode,WithDepthBuffer]
13 (progName,_) <- getArgsAndInitialize
14

15 createWindow progName
16

17 depthFunc $= Just Less
18

19 pPos <- new (90::Int,270::Int,2.0)
20 pCube <- new initCube
21

22 displayCallback $= display pPos pCube
23 keyboardMouseCallback $= Just (keyboard pPos pCube)
24

25 reshapeCallback $= Just reshape
26 mainLoop
27

28 display pPos pCube = do
29 clearColor $= Color4 1 1 1 1

CHAPTER 6. THIRD DIMENSION 6-17

30 clear [ColorBuffer,DepthBuffer]
31 loadIdentity
32 setPointOfView pPos
33 cube <- get pCube
34 renderCube$fmap doColor cube
35 swapBuffers
36

37 keyboard _ pCube (Char ’1’) Down _ _
38 = rot pCube RubikLogic.Top
39 keyboard _ pCube (Char ’2’) Down _ _
40 = rot pCube RubikLogic.Bottom
41 keyboard _ pCube (Char ’3’) Down _ _
42 = rot pCube RubikLogic.Front
43 keyboard _ pCube (Char ’4’) Down _ _
44 = rot pCube RubikLogic.Back
45 keyboard _ pCube (Char ’5’) Down _ _
46 = rot pCube RubikLogic.Left
47 keyboard _ pCube (Char ’6’) Down _ _
48 = rot pCube RubikLogic.Right
49 keyboard pPos _ c _ _ _
50 = keyForPos pPos c
51

52 rot pCube p = do
53 cube <- get pCube
54 pCube $= rotateArea p cube
55 postRedisplay Nothing

6.5 Light

Let us begin with a simple 3-dimensional shape: a cube. A cube has six squares which we
can render as the primitive shape Quad.

Cube.hs
1 module Cube where
2

3 import Graphics.Rendering.OpenGL
4 import Graphics.UI.GLUT as GLUT
5

6 import PointsForRendering
7

8 cube l = renderAs Quads corners
9 where

10 corners =
11 [(l,0,l),(0,0,l),(0,l,l),(l,l,l)
12 ,(l,l,l),(l,l,0),(l,0,0),(l,0,l)
13 ,(0,0,0),(l,0,0),(l,0,l),(0,0,l)
14 ,(l,l,0),(0,l,0),(0,0,0),(l,0,0)
15 ,(0,l,l),(l,l,l),(l,l,0),(0,l,0)

CHAPTER 6. THIRD DIMENSION 6-18

16 ,(0,l,l),(0,l,0),(0,0,0),(0,0,l)
17]

Example:
We make a first try at rendering a cube:

RenderCube.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Cube
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8 createWindow progName
9 displayCallback $= display

10 mainLoop
11

12 display = do
13 clear [ColorBuffer]
14 rotate 40 (Vector3 1 1 (1::GLfloat))
15 cube 0.5
16 loadIdentity
17 flush

The resulting window can be found in figure 6.9. It is not very exiting, we see a
white shape, which has the outline of a cube, but do not get the three dimensional
visual effect of a cube.

Figure 6.9: An unlit cube.

CHAPTER 6. THIRD DIMENSION 6-19

6.5.1 Defining a light source

For rendering three dimensional objects it is not enough to specifiy their shapes and your
viewing position. Crucial is the way the objects are illuminated. In order to get a three
dimensional viesual effect on your two dimensional computer screen, it needs to be defined
what kind of light source lights the object.

A light source can be specified fairly easy. First you need to set the state variable lighting
to the value Enabled. Then you need to specify the position of your light source. This can
be done by setting a special position state variable, e.g. by
position (Light 0) $= Vertex4 0.8 0 3.0 5.0.
And finally you need to turn the light source on by setting its state variable to enabled:
light (Light 0) $= Enabled.

Example:
Now we can render a cube with a defined light source:

LightCube.hs
1 import Graphics.Rendering.OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import Cube
5

6 main = do
7 (progName,_) <- getArgsAndInitialize
8

9 depthFunc $= Just Less
10

11 createWindow progName
12

13 lighting $= Enabled
14 position (Light 0) $= Vertex4 1 0.4 0.8 1
15 light (Light 0) $= Enabled
16

17 displayCallback $= display
18 mainLoop
19

20 display = do
21 clear [ColorBuffer]
22 rotate 40 (Vector3 1 1 (1::GLfloat))
23 cube 0.5
24 loadIdentity
25 flush

The resulting window can be found in figure 6.10. Now we can identify a bit
more the cube.

You might wonder, why the vertex for the light source position has four parameters. The
forth parameter is a value by which the other three (the x, y, z coordinates) get divided.

CHAPTER 6. THIRD DIMENSION 6-20

Figure 6.10: A lit cube.

6.5.2 Tux the Penguin

Let us render some cute object: Tux the penguin. We will roughly use the data from the
OpenGL game tuxracer. The nice thing about a penguin is, that you can built it almost
completely out of spheres. We will render Tux simply by rendering spheres, which are scaled
to different forms and moved to the correct position.

Overall Setup
Tux.hs

1 import Graphics.Rendering.OpenGL as OpenGL
2 import Graphics.UI.GLUT as GLUT
3

4 import OrbitPointOfView
5 import StateUtil
6

7 main = do
8 (progName,_) <- getArgsAndInitialize
9 initialDisplayMode $= [WithDepthBuffer,DoubleBuffered]

10 pPos <- new (90::Int,270::Int,1.0)
11 depthFunc $= Just Less
12 createWindow progName
13

14 lighting $= Enabled
15 normalize $= Enabled
16 depthFunc $= Just Less
17

18 position (Light 0) $= Vertex4 0 0 (10) 0
19 ambient (Light 0) $= Color4 1 1 1 1
20 diffuse (Light 0) $= Color4 1 1 1 1

CHAPTER 6. THIRD DIMENSION 6-21

21 specular (Light 0) $= Color4 1 1 1 1
22 light (Light 0) $= Enabled
23

24 displayCallback $= display pPos
25 keyboardMouseCallback $= Just (keyboard pPos)
26 reshapeCallback $= Just reshape
27 mainLoop
28

29 keyboard pPos c _ _ _ = keyForPos pPos c

The main display function clears the necessary buffers and calls the main function for ren-
dering the penguin Tux.

Tux.hs
30 display pPos = do
31 loadIdentity
32 clearColor $= Color4 1 0 0 1
33 setPointOfView pPos
34 clear [ColorBuffer,DepthBuffer]
35 tux
36 swapBuffers

Auxilliary Functions

We will use some auxilliary functions. First of all a function, which renders a scaled sphere.

Tux.hs
37 sphere r xs ys zs = do
38 scal xs ys zs
39 createSphere r
40

41 createSphere r = renderObject Solid $Sphere’ r 50 50
42

43 scal:: GLfloat -> GLfloat -> GLfloat -> IO ()
44 scal x y z = scale x y z

Furthermore some functions for easy translate and rotate transformations:

Tux.hs
45 transl:: GLfloat -> GLfloat -> GLfloat -> IO ()
46 transl x y z= translate$Vector3 x y z
47

48 rota:: GLfloat -> GLfloat -> GLfloat -> GLfloat -> IO ()
49 rota a x y z = rotate a $ Vector3 x y z
50

51 rotateZ a = rota a 0 0 1
52 rotateY a = rota a 0 1 0
53 rotateX a = rota a 1 0 0

CHAPTER 6. THIRD DIMENSION 6-22

And eventually some functions to set the material properties for the different parts of a
penguin.

Tux.hs
54 crMat (rd,gd,bd) (rs,gs,bs) exp = do
55 materialDiffuse Front $= Color4 rd gd bd 1.0
56 materialAmbient Front $= Color4 rd gd bd 1.0
57 materialSpecular Front $= Color4 rs gs bs 1.0
58 materialShininess Front $= exp
59

60 materialDiffuse Back $= Color4 rd gd bd 1.0
61 materialSpecular Back $= Color4 rs gs bs 1.0
62 materialShininess Back $= exp
63

64 whitePenguin = crMat (0.58, 0.58, 0.58)(0.2, 0.2, 0.2) 50.0
65 blackPenguin = crMat (0.1, 0.1, 0.1) (0.5, 0.5, 0.5) 20.0
66 beakColour = crMat (0.64, 0.54, 0.06)(0.4, 0.4, 0.4) 5
67 nostrilColour= crMat (0.48039, 0.318627, 0.033725)(0.0,0.0,0.0) 1
68 irisColour = crMat (0.01, 0.01, 0.01)(0.4, 0.4, 0.4) 90.0

Torso and Head

The neck and torso of a penguin are almost black spheres with some white front parts. We
will modell such figures by setting s white sphere in front of a black sphere.

Tux.hs
69 makeBody = do
70 preservingMatrix$do
71 blackPenguin
72 sphere 1 0.95 1.0 0.8
73 preservingMatrix$do
74 whitePenguin
75 transl 0 0 0.17
76 sphere 1 0.8 0.9 0.7

The resulting image can be found in figure 6.11.

Torso and shoulders are scaled body parts:

Tux.hs
77 createTorso = preservingMatrix$do
78 scal 0.9 0.9 0.9
79 makeBody
80

81 createShoulders = preservingMatrix$do
82 transl 0 0.4 0.05
83 leftArm
84 rightArm
85 scal 0.72 0.72 0.72
86 makeBody

CHAPTER 6. THIRD DIMENSION 6-23

Figure 6.11: Basic part for a penguin torso.

Figure 6.12: Penguin torso and shoulders.

The resulting image for torso and shoulders can be found in figure 6.12.

Tux.hs
87 createNeck = preservingMatrix$do
88 transl 0 0.9 0.07
89 createHead
90 rotateY 90
91 blackPenguin
92 sphere 0.8 0.45 0.5 0.45
93 transl 0 (-0.08) 0.35
94 whitePenguin

CHAPTER 6. THIRD DIMENSION 6-24

95 sphere 0.66 0.8 0.9 0.7
96

97 createHead = preservingMatrix$do
98 transl 0 0.3 0.07
99 createBeak

100 createEyes
101 rotateY 90
102 blackPenguin
103 sphere 1 0.42 0.5 0.42
104

105 createBeak = do
106 preservingMatrix$do
107 transl 0 (-0.205) 0.3
108 rotateX 10
109 beakColour
110 sphere 0.8 0.23 0.12 0.4
111 preservingMatrix$do
112 beakColour
113 transl 0 (-0.23) 0.3
114 rotateX 10
115 sphere 0.66 0.21 0.17 0.38

Eyes
Tux.hs

116 createEyes = preservingMatrix$do
117 leftEye
118 leftIris
119 rightEye
120 rightIris
121

122 leftEye = preservingMatrix$do
123 transl 0.13 (-0.03) 0.38
124 rotateY 18
125 rotateZ 5
126 rotateX 5
127 whitePenguin
128 sphere 0.66 0.1 0.13 0.03
129

130 rightEye = preservingMatrix$do
131 transl (-0.13) (-0.03) 0.38
132 rotateY (-18)
133 rotateZ (-5)
134 rotateX 5
135 whitePenguin
136 sphere 0.66 0.1 0.13 0.03
137

138 leftIris = preservingMatrix$do
139 transl 0.12 (-0.045) 0.4

CHAPTER 6. THIRD DIMENSION 6-25

140 rotateY 18
141 rotateZ 5
142 rotateX 5
143 irisColour
144 sphere 0.66 0.055 0.07 0.03
145

146 rightIris = preservingMatrix$do
147 transl (-0.12) (-0.045) 0.4
148 rotateY (-18)
149 rotateZ (-5)
150 rotateX 5
151 irisColour
152 sphere 0.66 0.055 0.07 0.03

Legs
Tux.hs

153 leftArm = preservingMatrix$do
154 rotateY 180
155 transl (-0.56) 0.3 0
156 rotateZ 45
157 rotateX 90
158 leftForeArm
159 blackPenguin
160 sphere 0.66 0.34 0.1 0.2
161

162 rightArm = preservingMatrix$do
163 transl (-0.56) 0.3 0
164 rotateZ 45
165 rotateX(-90)
166 rightForeArm
167 blackPenguin
168 sphere 0.66 0.34 0.1 0.2
169

170 leftForeArm = preservingMatrix$do
171 transl (-0.23) 0 0
172 rotateZ 20
173 rotateX 90
174 leftHand
175 blackPenguin
176 sphere 0.66 0.3 0.07 0.15
177

178 rightForeArm = leftForeArm
179

180 leftHand = preservingMatrix$do
181 transl (-0.24) 0 0
182 rotateZ 20
183 rotateX 90
184 blackPenguin

CHAPTER 6. THIRD DIMENSION 6-26

185 sphere 0.5 0.12 0.05 0.12
186

187 leftTigh = preservingMatrix$do
188 rotateY 180
189 transl (-0.28) (-0.8) 0
190 rotateY 110
191 leftHipBall
192 leftCalf
193

194 rotateY (-110)
195 transl 0 (-0.1) 0
196 beakColour
197 sphere 0.5 0.07 0.3 0.07
198

199 leftHipBall = preservingMatrix$do
200 blackPenguin
201 sphere 0.5 0.09 0.18 0.09
202

203 rightTigh = preservingMatrix$do
204 transl (-0.28) (-0.8) 0
205 rotateY (-110)
206 rightHipBall
207 rightCalf
208

209 transl 0 (-0.1) 0
210 beakColour
211 sphere 0.5 0.07 0.3 0.07
212

213 rightHipBall = preservingMatrix$do
214 blackPenguin
215 sphere 0.5 0.09 0.18 0.09
216

217 leftCalf = preservingMatrix$do
218 transl 0 (-0.21) 0
219 rotateY 90
220 leftFoot
221 beakColour
222 sphere 0.5 0.06 0.18 0.06
223

224 rightCalf = preservingMatrix$do
225 transl 0 (-0.21) 0
226 rightFoot
227 beakColour
228 sphere 0.5 0.06 0.18 0.06

Feet
Tux.hs

229 foot = preservingMatrix$do
230 scal 1.1 1.0 1.3

CHAPTER 6. THIRD DIMENSION 6-27

231 beakColour
232 footBase
233 toe1
234 toe2
235 toe3
236

237 footBase = preservingMatrix$do
238 sphere 0.66 0.25 0.08 0.18
239

240 toe1 = preservingMatrix$do
241 transl (-0.07) 0 0.1
242 rotateY 30
243 scal 0.27 0.07 0.11
244 createSphere 0.66
245

246 toe2 = preservingMatrix$do
247 transl (-0.07) 0 (-0.1)
248 rotateY (-30)
249 sphere 0.66 0.27 0.07 0.11
250

251 toe3 = preservingMatrix$do
252 transl (-0.08) 0 0
253 sphere 0.66 0.27 0.07 0.10
254

255 leftFoot = preservingMatrix$do
256 transl 0 (-0.09) 0
257 rotateY (100)
258 foot
259

260 rightFoot = preservingMatrix$do
261 transl 0 (-0.09) 0
262 rotateY 180
263 foot

The resulting image can be found in figure 6.13.

Tail
Tux.hs

264 createTail = preservingMatrix$ do
265 transl 0 (-0.4) (-0.5)
266 rotateX (-60)
267 transl 0 0.15 0
268 blackPenguin
269 sphere 0.5 0.2 0.3 0.1

The complete penguin

We can use all the parts to define Tux.

CHAPTER 6. THIRD DIMENSION 28

Figure 6.13: A penguin foot.

Tux.hs
270 tux = preservingMatrix$do
271 scale 0.35 0.35 (0.35::GLfloat)
272 rotateY (-180)
273 rotateZ (-180)
274 createTorso
275 createShoulders
276 createNeck
277 leftTigh
278 rightTigh
279 createTail

The resulting window can be found in figure 6.14.

CHAPTER 6. THIRD DIMENSION 29

Figure 6.14: Tux the penguin..

HASKELL EXAMPLES 30

Haskell Examples

APolygon, 1-3
ApproxCircle, 2-17

BackgroundColor, 2-5

Circle, 2-16, 2-17
Clear, 2-4
Coffee, 3-4
ColorCube, 6-9
Compose, 3-6, 3-7
Cube, 6-17

Double, 5-5

EvenMorePoints, 2-8

FillCircle, 2-18
ForgottenReset, 3-10

Get, 2-2

HelloWindow, 1-1
Hidden, 6-2

Idle, 5-4, 5-5

LightCube, 6-19
LineAttributes, 2-21

MorePoints, 2-7
MyTransformations, 3-9

NotHidden, 6-1
NotSmaller, 6-4

OrbitAroundCube, 6-10
OrbitPointOfView, 6-8
Ortho, 4-4

PointsForRendering, 2-9
PointSize, 2-21
PolyColor, 2-23
Pong, 5-6–5-10
Print, 1-5

RenderCube, 6-18
RenderLineLoop, 2-10
RenderLines, 2-10
RenderLineStrip, 2-11

RenderPoints, 2-10
RenderPolygon, 2-16
RenderQuads, 2-14
RenderQuadStrip, 2-15
RenderRubik, 6-14, 6-16
RenderRubikFace, 3-13
RenderStar, 2-25
RenderTriangleFan, 2-14
RenderTriangles, 2-12
RenderTriangleStrip, 2-12
Reshape1, 4-1
Reshape2, 4-3
Ring, 2-19, 2-20
RubikFace, 3-11, 3-12
RubikLogic, 6-12, 6-14
RubiksCube, 6-16

Set, 2-1
SetGet, 2-3
SinglePoints, 2-6
Smaller, 6-6
SomePoints, 1-2, 1-3
SomeRings, 3-1, 3-2
SomeSquares, 3-3, 3-4
Squares, 3-2, 3-3
Star, 2-24, 2-25
State, 5-3
StateUtil, 5-1

Tea, 2-26
TestCircle, 2-17
TestRing, 2-20
TestShear, 3-9
Tux, 6-20–6-27

Viewport, 4-3

List of Figures

1.1 A simple polygon. 1-4

2.1 Lines between points. 2-11

2.2 A loop of lines. 2-11

2.3 A strip in terms of lines. 2-12

2.4 Triangles. 2-13

2.5 A triangle strip. 2-13

2.6 A triangle strip. 2-14

2.7 Quads. 2-15

2.8 QuadStrips. 2-16

2.9 10 points on a circle. 2-18

2.10 Rendering a full circle. 2-19

2.11 A filled circle. 2-19

2.12 A simple ring shape. 2-21

2.13 Points of a large size. 2-22

2.14 Thick stippled lines. 2-23

2.15 A triangle with different vertex colors . 2-24

2.16 RenderStar . 2-26

2.17 A tea pot. 2-27

3.1 Rings translated to different positions. 3-3

3.2 Squares translated and rotated. 3-5

3.3 A coffee pot. 3-6

3.4 Different compositions of translation and rotation. 3-8

3.5 Applying shear to some shapes. 3-10

3.6 a Side of Rubik’s Cube with further transformations applied to it. 3-14

4.1 Enlarging a window with the empty reshape function. 4-2

31

LIST OF FIGURES 32

4.2 A Viewport smaller than the window. 4-4

4.3 Two windows with different projection. 4-6

5.1 Pong in action. 5-7

6.1 Third dimension not correctly taken into account. 6-2

6.2 Third dimension correctly taken into account by use of depth function. 6-3

6.3 Two squares in orthographic projection. 6-5

6.4 Perspective projection with frustum. 6-5

6.5 Two squares in perspective projection. 6-7

6.6 Perspective projection. 6-7

6.7 A view of the colored cube, . 6-11

6.8 Rubik’s Cube in action. 6-11

6.9 An unlit cube. 6-18

6.10 A lit cube. 6-20

6.11 Basic part for a penguin torso. 6-23

6.12 Penguin torso and shoulders. 6-23

6.13 A penguin foot. 28

6.14 Tux the penguin.. 29

Bibliography

[CFH+98] Norman Chin, Chris Frazier, Paul Ho, Zicheng Lui, and Kevin P.
Smith. The OpenGL Graphics System Utility Library, 1998.
ftp://ftp.sgi.com/opengl/doc/opengl1.2/glu1.3.ps.

[Kil96] Mark J. Kilgard. The OpenGL Utility Toolkit (GLUT), 1996.
www.opengl.org/developers/documentation/glut/glut-3.spec.ps.

[PJW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In Proceedings 20th Symposium on Principles of Programming Languages, pages
71–84, Charleston, South Carolina, 1993. ACM.

[Wad90] P. Wadler. Comprehending monads. In Proceedings of Symposium on Lisp and
Functional Programming, pages 61–78, Nice, France, June 1990. ACM.

[WBN+97] Mason Woo, OpenGL Architecture Review Board, Jackie Neider, Tom Davis,
and Dave Shreiner. OpenGL Programming Guide 3rd Edition. Addison-Wesley,
Reading, MA, 1997.

33

